
Surface Based Anti-Aliasing

Marco Salvi ∗ Kiril Vidimče

Intel Corporation

Figure 1: From left to right: 8x super-sample anti-aliasing (SSAA), 8x multi-sample anti-aliasing (MSAA) and surface-based anti-aliasing
(SBAA) with 8 visibility and 2 surface samples per pixel. The circles represent visibility samples, while the blue and red discs represent
shading samples from two different surfaces. The four red primitives sharing the same vertex are part of the same foreground surface. Our
MERGE2 algorithm exploits this configuration and shades only one sample for all four red primitives while reserving a second surface sample
for the blue background surface. Unlike multi-sampling, SBAA based algorithms impose an upper bound on the number of captured, stored
and shaded surfaces rather than primitives in each pixel, therefore significantly reducing storage and shading costs.

Abstract

We present surface based anti-aliasing (SBAA), a new approach
to real-time anti-aliasing for deferred renderers that improves the
performance and lowers the memory requirements for anti-aliasing
methods that sample sub-pixel visibility. We introduce a novel way
of decoupling visibility determination from shading that, compared
to previous multi-sampling based approaches, significantly reduces
the number of samples stored and shaded per pixel. Unlike post-
process anti-aliasing techniques used in conjunction with deferred
renderers, SBAA correctly resolves visibility of sub-pixel features,
minimizing spatial and temporal artifacts.

Keywords: anti-aliasing, deferred shading, multi-sampling

1 Introduction

Real-time applications based on deferred shading do not scale well
with anti-aliasing methods that evaluate visibility at sub-pixel level
since memory requirements and shading costs grow linearly with
the number of per-pixel visibility samples. These limitations make
it prohibitive to use deferred renders with the highest visibility rates
currently supported on graphics hardware (e.g. 8 samples per pixel)
and could entirely prevent using these popular software techniques
on low power mobile devices or on future graphics processors sup-
porting even higher visibility sampling rates.

The main contribution of this work is a novel way of decoupling vi-
sibility from shading that enables storing and shading a fixed num-
ber of samples per pixel. We do so by selecting and shading frag-
ments that keep artifacts at a minimum and we demonstrate that our
method can lower memory requirements by up to 65% while signif-
icantly reducing shading costs. Surface based anti-aliasing gener-
ates images that exhibit low levels of spatial and temporal aliasing.

∗e-mail: {marco.salvi, kiril.vidimce}@intel.com

Moreover our algorithm is scalable and enables deferred shading
to be used on future architectures that may support more visibility
samples per pixel.

2 Related Work

It is beyond the scope of this work to describe the numerous real-
time anti-aliasing algorithms developed over the last few decades;
we therefore limit our analysis to techniques most similar to ours.

Super-sampling anti-aliasing (SSAA) reduces aliasing artifacts by
directly increasing the image sampling rate. In practice this can
be done by either computing N color samples per pixel or by ren-
dering the scene in multiple passes with different subpixel offsets
and accumulating the result [Fuchs et al. 1985; Deering et al. 1988;
Mammen 1989; Haeberli and Akeley 1990].

Because SSAA requires computing N samples per pixel, various
methods have been developed to lower its shading cost. The de-
facto standard method supported by virtually all modern graphics
processors and APIs is multi-sampling anti-aliasing (MSAA) [Ake-
ley 1993]. This method reduces the cost of computing the final pixel
color by decoupling visibility determination from shading and by
limiting per-pixel shading to the rate of one sample per primitive
while still evaluating visibility at full rate. Both SSAA and MSAA
share the same storage requirements which grow linearly with the
number of samples.

Coverage sampled anti-aliasing (CSAA) shades primitives once per
pixel but unlike MSAA it decouples visibility and color data from
coverage information [Young 2007]. The latter can be efficiently
sampled at higher rates via hardware rasterization and stored in a
compact form as bit masks, making it possible to approach the vi-
sual quality of high MSAA rates while lowering storage and shad-
ing costs. Since the final pixel color can depend on the geometric
primitive submission order, CSAA can also be seen as a form of
streaming, lossy color compression. Similarly to CSAA, the Z3

algorithm [Jouppi and Chang 1999] also compresses color infor-
mation by merging fragments as necessary in order to fit fragment
data within a fixed amount of storage per pixel, while Lee et al.
describe a modified A-buffer method that can merge fragments at
list insertion time [Lee and Kim 2000]. We note that these three
algorithms do not map well to deferred rendering pipelines because
color data is required to guide the compression process. To reduce



the cost of shading micropolygons in a GPU pipeline, Fatahalian et
al. propose to merge pixel quads rasterized from adjacent primitives
that have been generated from the same tessellated patch and that do
not overlap in screen space [Fatahalian et al. 2010]. Quad-fragment
merging is performed prior to shading and does not require color
data, although it is applied to a small number of primitives buffered
on-chip and it is therefore not directly applicable to deferred ren-
derers. Moreover the merging scheme assumes that primitives are
by definition part of the same surface making it infeasible to apply
a similar technique to arbitrary (i.e. non-tessellated) geometry.

Several methods have been proposed to address the above limi-
tations of using multi-sampling in conjunction with deferred ren-
derers. Lightspeed decouples visibility samples from geometry
samples (G-buffer) with an indirect frame-buffer which densely
encodes variable-rate visibility information, enabling faster shad-
ing [Ragan-Kelley et al. 2007]. Initially developed for incremental
relighting applications this method can be implemented in real-time
on modern GPUs but it cannot alleviate MSAA memory require-
ments. Lauritzen significantly lowers shading costs by analyzing
the multi-sampled G-buffer in order to discover planar features that
can be shaded at pixel frequency but it does not address the often
prohibitive amount of memory necessary to couple MSAA to de-
ferred shading [Lauritzen 2010].

Image post-processing based anti-aliasing techniques such as mor-
phological anti-aliasing [Reshetov 2009] can offer very high per-
formance with low or no impact on memory requirements but they
lack the robustness necessary to consistently generate images that
do not exhibit significant spatial and temporal artifacts in the pres-
ence of sub-pixel features. For a survey of the most recent mor-
phological and filtering based techniques see the course notes from
Jimenez et al. [2011]. Lastly, sub-pixel reconstruction anti-aliasing
significantly improves upon post-processing methods by evaluating
visibility at super-resolution while limiting shading to one sample
per pixel [Chajdas et al. 2011].

Surface based anti-aliasing (SBAA) is a technique that analyzes
multi-sampled data such as depth, primitive ID, etc., to determine
how many G-buffer samples need to be rendered, stored and shaded
per pixel. SBAA efficiently decouples visibility from shading by
aggregating point samples into larger to-be-shaded fragments and
it is therefore similar in spirit to the work of Lauritzen [2010] and
Fatahalian et al. [2010]. Unlike these techniques our work performs
its analysis before rendering the G-buffer and can handle an arbi-
trary, but fixed a priori, number of G-buffer samples per pixel, thus
reducing both storage and shading costs when compared to previ-
ous multi-sampling based methods. In particular our anti-aliasing
scheme makes trade-offs similar to recent order-independent tech-
niques like the k-buffer and adaptive transparency where image
quality is exchanged for the benefits of fixed storage requirements
per pixel [Bavoil et al. 2007; Salvi et al. 2011].

3 Algorithm

The starting point for our method is the standard multi-sampling
anti-aliasing technique supported by modern GPUs. MSAA imple-
mentations typically compute the final color C of a pixel as sum
of the color of the M fragments that cover it. The contribution of
individual primitives is proportional to their fractional coveragewi:

C =

M∑
i=1

wici (1)

with
∑
wi = 1, where wi is determined as the fraction of the

N per-pixel visibility samples covered by the ith geometric prim-
itive. If M is equal to N , multi-sampling is equivalent to SSAA,

although when M < N this method effectively reduces the num-
ber of samples that need to be shaded at the cost of a less accurate
reconstruction of the color of a primitive within a given pixel.

Software designed to decouple and defer shading by first render-
ing per-pixel geometric attributes to a G-buffer cannot easily take
advantage of shading rate reduction provided by multi-sampling
since at shading time the relation between geometry samples and
the primitives they belong to is generally not known. Moreover the
size of a typical G-buffer sample can be much larger than a color
sample (e.g. 20-40 bytes) which can make the usage of deferred
renderers at high resolutions and high multi-sampling rates imprac-
tical due to the very large storage and memory bandwidth require-
ments. For instance a 1080p image rendered with 8x MSAA and 32
byte G-buffer samples would require over 700 MBytes of graphics
memory.

3.1 Surface Based Anti-Aliasing

We begin by establishing terminology. Renderers generate scenes
that consist of a number of individual surfaces (or meshes) each
of which consists of numerous primitives. Modern GPUs are de-
signed around rasterization and rendering of triangles as the native
primitive in the graphics pipeline.

Our method pushes multi-sampling one step further by observing
that even when a pixel is covered by multiple primitives it is gen-
erally only covered by a very small number of distinct surfaces. In
other words very often primitives covering a given pixel tend to be
connected and to belong to the same surface. If the local curvature
of a surface is low (e.g. close to a plane) then it is likely that its
color within a pixel does not change significantly. In fact we note
that texture sampling hardware automatically takes care of filter-
ing out large color variations within a pixel introduced by arbitrary
color textures, with the remaining higher frequency terms typically
generated by lighting (e.g. specular terms).

Thus, we can further reduce the per-pixel shading rate by comput-
ing only one color sample per surface. The final pixel color is given
by the sum of the contributions of K surface samples Si:

C =

K∑
i=1

sici (2)

with
∑
si = 1, where si is the coverage associated to Si. If we

assign to each surface sample Si a G-buffer sample and store only
a small and fixed (e.g. 2 or 3) number of surfaces per pixel this
approach also makes possible to significantly reduce the size of
the frame-buffer for high visibility sampling rates, especially when
used in conjunction with rendering techniques that have a high per
sample storage cost, such as deferred shading. Figure 1 illustrates
how our method operates with respect to SSAA and MSAA.

It is therefore possible to define a new class of surface based anti-
aliasing algorithms for deferred shading which require the follow-
ing steps:

1. Render opaque geometry via multi-sampling, capture depth,
primitive IDs and other data

2. For each pixel analyze sample data, detect surfaces and output
their primitive IDs and number of samples covered

3. Render opaque geometry via multi-sampling and capture G-
buffer samples identified in the previous pass

4. Shade the G-buffer and output final anti-aliased image



Figure 2: Image quality comparison between TOP2 and MERGE2
coupled to 8x MSAA. From left to right: DRAGON scene and
magnified details respectively rendered with our reference solution,
TOP2 and MERGE2. The DRAGON mesh is extremely dense, gen-
erating an average of 6 primitives per pixel at 720p and it provides
a clear failure case for the TOP algorithm which generates low
quality results. On the other hand the MERGE algorithm can match
the reference solution by only shading up to 2 surface samples per
pixel.

We note that a standard deferred renderer already requires rendering
passes similar to steps 3 and 4, while some implementations also
employs a so-called “z pre-pass” that can resemble step 1.

The key idea of our method lies in the per-pixel data analysis and
surface detection performed in step 2. In particular we propose two
simple and scalable surface detection algorithms that can discover
surfaces by analyzing the sub-pixel data.

3.2 TOP Algorithm

As shown in Equation 1, computing the final color of a pixel may
require accumulating the contribution of up to one primitive per vi-
sibility sample, although in most cases a primitive will cover multi-
ple visibility samples per pixel, especially with high multi-sampling
rates.

We can therefore define a simple mapping between a primitive and a
surface and use primitive IDs to detect the primitives that cover the
most samples in a given pixel. We call this algorithm TOPn, where
n is the maximum number of per-pixel primitives and therefore G-
buffer samples that we can detect and output.

Note that if a pixel is covered by at most n primitives, TOPn will
generate the same results as multi-sampling, while in the remaining
cases we can minimize the overall per pixel error by simply ignor-
ing primitives with smaller coverage.

3.3 MERGE Algorithm

A typical failure case for TOP is exemplified by very dense geom-
etry rendered with high multi-sampling rates. When the number
of primitives covering a pixel converges to the number of visibility
samples, no primitive tends to cover more samples than the others.
As shown in Figure 2, selecting surfaces by choosing primitives
with higher coverage doesn’t yield optimal results.

When primitive coverage does not act as a good proxy to detect sur-
faces we need additional information to determine which samples
can be mapped to a surface. To improve upon TOP we first select
the primitive P with highest coverage and we then find the samples
i whose normal n̂i is aligned to P by using the following test:

n̂r · n̂i > cos(αε)

where n̂r is a reference normal drawn from a sample of P and
αε is a small angle. While this simple test provides a new set of
samples A that can be possibly identified as belonging to the same
surface, it can also erroneously merge primitives which are aligned
in space but that are not spatially correlated (e.g. very distant but

spatially aligned background and foreground surfaces covering the
same pixel).

To avoid false positives the MERGE algorithm determines whether
the discrete depth distribution defined by A is not unimodal. In
other words we want to determine if the depth distribution has more
than one local maximum. To simplify computations we only detect
one or two mode distributions. We do so by spatially subdivid-
ing the samples in A in three regions: two small and equally sized
regions1 at the extremities of the depth range defined by A and a
third region at the center of it. If the center region is empty then
all samples must be located inside the small regions at both ends of
the depth range and thus we consider the distribution to be bimodal
and samples in A are determined to not be part of the same surface.
In this case MERGE behaves like TOP and outputs primitive IDs
and sample count of the primitive with highest coverage. When the
central region is not empty, the depth distribution is determined to
be unimodal and we output the primitive ID of the reference normal
n̂r and the number of samples in A.

In both cases we can generalize the MERGEn algorithm to any n
number of surfaces by iteratively applying our algorithm n times
only to the samples that have not been identified yet as part of some
surface, until we either run out of samples or we have output the
maximum number (n) of surface samples we are allowed to pro-
cess.

4 Implementation

Our surface based anti-aliasing algorithms require a few simple
modifications to a standard deferred render.

The DirectX 11 based implementation of TOPn first renders prim-
itive IDs in a z pre-pass that may or may not be already part of a
deferred rendering pipeline. A subsequent analysis pass loads per-
sample primitive IDs for each pixel onto the GPU and reconstructs
the sample count of each primitive. We do so by using the least sig-
nificant bits of a primitive ID to address, increment and read back
a per-primitive counter stored in on-chip memory. Due to the lim-
ited size of this memory we found that using only 7 bits guarantees
good performance while minimizing artifacts due to address alias-
ing. Moreover since the most significant bits of the primitive IDs
are not needed, this method enables rendering them to storage and
bandwidth-efficient render targets (i.e. 8 bit per sample). At each
iteration we discover a new surface and we output it to a 2 byte
structure:

struct {
unsigned char primitiveID;
unsigned char sampleCount;

} SurfaceData;

for a maximum of n surfaces per pixel.

When rendering the G-buffer we bind the multi-sampled depth
buffer and primitive ID buffer that got generated during step 1. We
automatically process only fragments that match the ones already
in the multi-sampled depth buffer and discard everything else. We
then check if the primitive ID of the current fragment matches one
of the surface primitive IDs computed in the analysis pass; if it does
we output a new G-buffer sample for it, otherwise we discard the
fragment. Note that in this rendering pass we do not bind a multi-
sampled G-buffer as a render target; instead we shade at pixel fre-
quency and output per-pixel data to a writable memory buffer. In
the G-buffer shading pass we shade up to n G-buffer samples per
pixel depending on how many distinct surfaces were found by the

1While the size of these regions is arbitrary we have found that the opti-
mal size for best image quality is 1

4
of the whole depth range.



4x MSAA 8x MSAA
Scene TOP2 MERGE2 TOP2 TOP3 MERGE2 MERGE3

SPONZA 0.62 1.5 1.0 1.1 2.3 2.4
GRASS 0.64 1.6 1.0 1.1 2.4 2.6

POWERPLANT 0.64 1.6 1.0 1.1 2.4 2.5
DRAGON 0.60 1.2 0.92 1.0 2.2 2.5

Table 1: SBAA analysis pass execution time in milliseconds for
different scenes rendered at 720p as a function of multi-sampling
rate, anti-aliasing method and number of G-Buffer samples.

sample analysis shader. Finally the pixel color is determined by
using Equation 2 where the fractional surface coverage si is com-
puted as the ratio of the number of visibility samples covered by the
ith surface and the total number of samples covered by all detected
surfaces.

To implement MERGEn we simply extend the z pre-pass to render
per sample normals to a 4 byte representation and we modify the
analysis pass to include the sample alignment and the depth uni-
modality tests discussed in Section 3.3. Note that the sample align-
ment test does not require very accurate normals and thus even a
more compact representation can be used, e.g., one that combines
normals and primitive IDs. This would further reduce storage and
memory bandwidth costs.

5 Results

We analyze various configurations of TOP and MERGE supporting
two G-Buffer samples per pixel with 4x MSAA and two or three
G-buffer samples with 8x MSAA. Our algorithms are compared to
a DirectX 11 based reference implementation of the deferred shad-
ing method recently introduced by Lauritzen [2010] and previously
discussed in Section 2. For our tests we set αε to π

16
.

To accurately probe the robustness of our surface based techniques
we evaluate performance and image quality on scenes representa-
tive of modern workloads, selected to stress characteristics such as
geometry density and complexity that can significantly impact the
final image. All results are gathered at the resolution of 1280 x 720
on an ATI Radeon HD 5870 GPU with an Intel Core 2 quad-core
CPU running Windows 7 64-bit.

5.1 Image Quality Analysis

In Figure 3 we qualitatively compare the reference solution with
and without multi-sampling to images generated with our TOP and
MERGE algorithms. For each scene we select an MSAA mode and
the two anti-aliasing methods that yield the best image quality. If
two or more techniques generate very similar images we choose the
ones with the lowest computational and memory costs.

5.1.1 SPONZA Scene

This is an indoor scene with many smooth or even flat surfaces that
do not form complex geometrical structures (floors, walls, arches,
vases, etc.). In scenes like SPONZA, TOP2 generates results prac-
tically indistinguishable from 4x and 8x MSAA, therefore it is not
necessary to resort to more complex algorithms which do not yield
any image quality improvement.

5.1.2 GRASS Scene

This scene exhibits dense and high frequency geometry. Individual
grass blades are modeled as single triangles defining well separated
and distinct surfaces in space. Therefore in most cases MERGE

won’t be able to fuse fragments together and as discussed in Sec-
tion 3.3 its behavior will automatically fall back to that of TOP with
both methods generating very similar results. Still images rendered
with TOP2 match very closely the reference implementation, al-
though temporal aliasing is still visible to some degree when the
camera is slowly moving through the scene. This issue can be ad-
dressed by adding a third G-Buffer sample per pixel. In particular
the TOP3 configuration exhibits very similar amounts of tempo-
ral aliasing perceivable with standard 8x MSAA while significantly
lowering rendering time and memory requirements.

5.1.3 POWERPLANT Scene

Similarly to the previous scene the POWERPLANT scene contains
thin and complex geometrical structures that when rendered with
8x MSAA generate pixels covered by many primitives. Although
unlike the GRASS scene in this case individual primitives are more
likely to be connected and to define distinct surfaces. This effect
is clearly visible in the magnified area in Figure 3 where MERGE2
can detect these surface and improve over TOP2 by generating an
image very close to the reference method. It also exhibits very little
to no temporal aliasing under slow camera movements.

5.2 Performance Analysis

The cost of analyzing per-sample data to generate IDs and coverage
for the samples that require shading goes from 0.6 ms for TOP2
with 4x MSAA to 2.6 ms for MERGE3 and 8x MSAA (see Table 1)
and it generally varies little across the tested scenes.

As mentioned in Section 4 there are additional rendering costs re-
lated to adding a z pre-pass to generate per-sample primitive IDs
and/or normals. It is difficult to determine any performance pat-
tern from this rendering pass alone as it can change significantly
across scenes and can have positive repercussions on the subse-
quent passes due to the increased number of fragments which are
more likely to be rejected before shading. We prefer instead to
quote performance numbers for the entire frame to understand if
despite these extra rendering costs our algorithms can still have a
positive impact on performance. In particular we measure the ren-
dering time with two different shading profiles: a simple profile
that evaluates only a single directional light with diffuse and specu-
lar terms and a complex profile that shades up to 16 complex lights
per G-buffer sample.

As evident from Table 2 our methods can significantly reduce the
rendering time when compared to the reference solution running
with 8x MSAA. Performance improvements are due to the often
vastly reduced cost of shading given that we can strongly constrain
the number of unique per-pixel shader invocations. We show the re-
duction of total shaded samples in Table 3. Unsurprisingly, scenes
with very high-frequency geometry like GRASS benefit the most
from our method reporting an up to 40% reduction in the total ren-
dering time for TOP2 coupled to the complex lighting profile. In
some cases SBAA can improve performance even when it shades
moderately more samples than the reference implementation (e.g.
the DRAGON scene rendered with TOPn and 8x MSAA). We at-
tribute this to the fact that our method shades from one to three sam-
ples per pixel, exhibiting a more regular and SIMD-friendly behav-
ior then Lauritzen [2010] that shades either one or eight samples per
pixel. We also note that SBAA can negatively affect performance
with 4x MSAA, e.g., when rendering the GRASS scene. In this
particular case our method does not sufficiently reduce the shading
cost to offset the additional computations it requires.



TOP2 (4x MSAA) REFERENCE TOP2
SP

O
N

Z
A

MERGE2 NO AA
TOP3 (8x MSAA) REFERENCE TOP2

G
R

A
SS

TOP3 NO AA
MERGE2 (8x MSAA) REFERENCE TOP2

PO
W

E
R

PL
A

N
T

MERGE2 NO AA

Figure 3: We compare three scenes rendered with the Lauritzen [2010] 4x or 8x MSAA reference implementation to a few variations of the
TOP and MERGE algorithms. Please note how our methods can generate images almost indistinguishable from the reference multi-sampling
based solution

4x MSAA 8x MSAA
Scene REFER (ms) TOP2 (%) MERGE2 (%) REFER (ms) TOP2 (%) TOP3 (%) MERGE2 (%) MERGE3 (%)

SPONZA 6.0 8.7 20 32.2 38.3 42.5 10.5 13.0 -26.7 -6.9 -14.3 11.5 -11.4 -0.8 -0.1 14.6
GRASS 11.0 14.5 -13.6 -1.4 -0.1 10.3 16.9 21.2 -39.0 -28.3 -34.3 -17.5 -37.9 -27.8 -20.7 -7.5

POWERPLANT 5.8 8.5 20.7 34.1 41.4 41.2 10.4 13.3 -26.0 -9.0 -14.4 8.3 -11.5 -3.0 0.1 12.0
DRAGON 7.8 8.6 20.5 19.8 34.6 32.6 11.8 12.8 -16.1 -14.8 -11.0 - 7.0 -2.5 -3.1 2.5 3.9

MBytes 144.1 80.9 (-44%) 94.9 (-34%) 284.8 98.4 (-65%) 128.3 (-54%) 126.6 (-55%) 156.4 (-45%)

Table 2: Scene statistics. We report the frame time in milliseconds with simple and complex lighting (respectively left and right sub-columns)
and percent variation in rendering time and memory requirements for the TOP and MERGE algorithms



4x MSAA 8x MSAA
Scene REFER (#) TOP2 MERGE2 REFER (#) TOP2 TOP3 MERGE2 MERGE3

SPONZA 1,041,972 3.14% -5.25% 1,265,839 -13.46% -9.25% -23.22% -22.16%
GRASS 1,000,996 5.38% 4.92% 1,987,385 -45.56% -43.73% -45.96% -44.27%

POWERPLANT 1,114,806 -4.75% -10.85% 1,447,662 -25.12% -22.64% -31.34% -30.55%
DRAGON 944,970 9.13% 2.08% 999,965 3.37% 13.06% -6.98% -6.73%

Table 3: Shading efficiency. We report number of total shaded samples for the reference Lauritzen [2010] rendering methods running at 4x
and 8x MSAA and the percent variations in number of shaded samples for the TOP and MERGE algorithms.

5.3 Memory analysis

Compared to the reference implementation our anti-aliasing meth-
ods can reduce memory needed for 4x and 8x MSAA respectively
by up to 44% and 65% (see Table 2), despite requiring additional
storage for data typically not necessary for deferred rendering (e.g.
primitive IDs). By switching from 8x MSAA to TOP2 an applica-
tion running at 1080p resolution can save ˜500 MBytes of graphics
memory, which can be employed to store more textures and models.

6 Conclusion

We have presented a new class of anti-aliasing algorithms for de-
ferred shading that can significantly improve performance and re-
duce memory requirements when compared to previous MSAA-
based solutions.

Our methods are scalable and likely to be even more efficient
when employed with high multi-sampling rates. In fact we expect
SBAA-based techniques to be key in making deferred shading per-
formance and memory requirements scale to 16x or even higher
multi-sampling rates on future GPUs while still taking advantage
of hardware-accelerated and power-efficient MSAA support.

In the future we would like to investigate improved surface detec-
tion schemes and architectural changes aimed at providing more
efficient support for surface based anti-aliasing techniques.

Acknowledgments

We thank Sungkil Lee for the GRASS scene. Thanks to the the
entire Advanced Rendering Technology team, Matt Pharr, Doug
Binks and Larry Seiler at Intel for their contributions and support.

References

AKELEY, K. 1993. Reality engine graphics. In Proceedings of the
20th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’93, 109–
116.

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, J. A.
L. D., AND SILVA, C. T. 2007. Multi-fragment effects on the
gpu using the k-buffer. In Proceedings of the 2007 symposium
on Interactive 3D graphics and games, ACM, New York, NY,
USA, I3D ’07, 97–104.

CHAJDAS, M., MCGUIRE, M., AND LUEBKE, D. 2011. Sub-
pixel reconstruction antialiasing. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM Press.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The triangle processor and normal vector
shader: a vlsi system for high performance graphics. In Com-
puter Graphics (Proceedings of SIGGRAPH 88), 21–30.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010.
Reducing shading on gpus using quad-fragment merging. In
ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA,
SIGGRAPH ’10, 67:1–67:8.

FUCHS, H., GOLDFEATHER, J., HULTQUIST, J. P., SPACH, S.,
AUSTIN, J. D., BROOKS, JR., F. P., EYLES, J. G., AND POUL-
TON, J. 1985. Fast Spheres, Shadows, Textures, Transparencies,
and Imgage Enhancements in Pixel-Planes. In Computer Graph-
ics (Proceedings of SIGGRAPH 85), ACM, vol. 19, 111–120.

HAEBERLI, P., AND AKELEY, K. 1990. The Accumulation Buffer:
Hardware Support for High-Quality Rendering. In Computer
Graphics (Proceedings of SIGGRAPH 90), ACM, vol. 24, 309–
318.

JIMENEZ, J., GUTIERREZ, D., YANG, J., RESHETOV, A., DE-
MOREUILLE, P., BERGHOFF, T., PERTHUIS, C., YU, H.,
MCGUIRE, M., LOTTES, T., MALAN, H., PERSSON, E., AN-
DREEV, D., AND SOUSA, T. 2011. Filtering approaches for
real-time anti-aliasing. In ACM SIGGRAPH Courses.

JOUPPI, N. P., AND CHANG, C.-F. 1999. Z3: an economical hard-
ware technique for high-quality antialiasing and transparency. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, ACM, New York, NY, USA,
HWWS ’99, 85–93.

LAURITZEN, A. 2010. Deferred rendering for current
and future rendering pipelines. Beyond Programmable
Shading course, SIGGRAPH 2010. http://bps10.idav.
ucdavis.edu/.

LEE, J.-A., AND KIM, L.-S. 2000. Single-pass full-screen hard-
ware accelerated antialiasing. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM, New York, NY, USA, HWWS ’00, 67–75.

MAMMEN, A. 1989. Transparency and antialiasing algorithms im-
plemented with the virtual pixel maps technique. IEEE Comput.
Graph. Appl. 9, 43–55.

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The lightspeed
automatic interactive lighting preview system. In ACM SIG-
GRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH
’07.

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of the 2009 ACM Symposium on High Performance Graphics.

SALVI, M., MONTGOMERY, J., AND LEFOHN, A. 2011. Adap-
tive transparency. In Proceedings of the ACM SIGGRAPH Sym-
posium on High Performance Graphics, ACM, New York, NY,
USA, HPG ’11, 119–126.

YOUNG, P. 2007. Coverage sampled anti-aliasing. Tech. rep.,
NVIDIA Corporation.

http://bps10.idav.ucdavis.edu/
http://bps10.idav.ucdavis.edu/

