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Figure 1: Left: original mesh (3 floats/vertex). Middle: two stages of our algorithm. Right: normal mesh (1 float/vertex). (Skull dataset
courtesy Headus, Inc.)

Abstract

Normal meshes are new fundamental surface descriptions inspired
by differential geometry. A normal mesh is a multiresolution mesh
where each level can be written as a normal offset from a coarser
version. Hence the mesh can be stored with a single float per ver-
tex. We present an algorithm to approximate any surface arbitrarily
closely with a normal semi-regular mesh. Normal meshes can be
useful in numerous applications such as compression, filtering, ren-
dering, texturing, and modeling.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling - curve, surface, solid, and object representa-

tions; hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Ap-

proximation - approximation of surfaces and contours, wavelets and fractals

Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-

terization, multiresolution, wavelets.

1 Introduction

The standard way to parameterize a surface involves three scalar
functions x(u, v), y(u, v), z(u, v). Yet differential geometry
teaches us that smooth surfaces locally can be described by a single
scalar height function over the tangent plane. Loosely speaking one
can say that the geometric information of a surface can be contained

in only a single dimension, the height over this plane. This obser-
vation holds infinitesimally; only special cases such as terrains and
star-shaped surfaces can globally be described with a single func-
tion.

In practice we often approximate surfaces using a triangle mesh.
While describing meshes is relatively easy, they have lost much
of the structure inherent in the original surface. For example, the
above observation that locally a surface can be characterized by a
scalar function is not reflected in the fact that we store 3 floats per
vertex. In other words, the correlation between neighboring sample
locations implied by the smoothness assumption is not reflected,
leading to an inherently redundant representation.

While vertex locations come as 3-dimensional quantities, the
above considerations tell us that locally two of those dimensions
represent parametric information and only the third captures geo-
metric, or shape, information. For a given smooth shape one may
choose different parameterizations, yet the geometry remains the
same. In the case of a mesh we can observe this by noticing that
infinitesimal tangential motion of a vertex does not change the ge-
ometry, only the sampling pattern, or parameterization. Moving in
the normal direction on the other hand changes the geometry and
leaves parameter information undisturbed.

1.1 Goals and Contributions
Based on the above observations, the aim of the present paper is to
compute mesh representations that only require a single scalar per
vertex. We call such representations normal meshes. The main in-
sight is that this can be done using multiresolution and local frames.
A normal mesh has a hierarchical representation so that all detail
coefficients when expressed in local frames are scalar, i.e., they only
have a normal component. In the context of compression, for ex-
ample, this implies that parameter information can be perfectly pre-
dicted and residual error is entirely constrained to the normal direc-
tion, i.e., contains only geometric information. Note that because
of the local frames normal mesh representations are non-linear.

Of course we cannot expect a given arbitrary input mesh to pos-
sess a hierarchical representation which is normal. Instead we de-



scribe an algorithm which takes an arbitrary topology input mesh
and produces a semi-regular normal mesh describing the same ge-
ometry. Aside from a small amount of base domain information,
our normal mesh transform converts an arbitrary mesh from a 3
parameter representation into a purely scalar representation. We
demonstrate our algorithm by applying it to a number of models
and experimentally characterize some of the properties which make
normal meshes so attractive for computations.

The study of normal meshes is of interest for a number of rea-
sons: they
• bring our computational representations back towards the “first

principles” of differential geometry;

• are very storage and bandwidth efficient, describing a surface
as a succinctly specified base shape plus a hierarchical normal
map;

• are an excellent representation for compression since all vari-
ance is “squeezed” into a single dimension.

1.2 Related Work
Efficient representations for irregular connectivity meshes have
been pursued by a number of researchers. This research is mo-
tivated by our ability to acquire densely sampled, highly detailed
scans of real world objects [19] and the need to manipulate these ef-
ficiently. Semi-regular—or subdivision connectivity—meshes offer
many advantages over the irregular setting due of their well devel-
oped mathematical foundations and data structure simplicity [23];
many powerful algorithms require their input to be in semi-regular
form [21, 22, 25, 1]. This has led to the development of a number
of algorithms to convert existing irregular meshes to semi-regular
form through remeshing. Eck et al. [9] use Voronoi tiling and har-
monic maps to build a parameterization and remesh onto a semi-
regular mesh. Krischnamurthy and Levoy [15] demonstrated user
driven remeshing for the case of bi-cubic patches, while Lee et
al. [18] proposed an algorithm based on feature driven mesh reduc-
tion to develop smooth parameterizations of meshes in an automatic
fashion. These methods use the parameterization subsequently for
semi-regular remeshing.

Our work is related to these approaches in that we also construct
a semi-regular mesh from an arbitrary connectivity input mesh.
However, in previous work prediction residuals, or detail vectors,
were not optimized to have properties such as normality. The main
focus was on the establishment of a smooth parameterization which
was then semi-regularly sampled.

The discussion of parameter versus geometry information orig-
inates in the work done on irregular curve and surface subdivi-
sion [4] [13] and intrinsic curvature normal flow [5]. There it is
shown that unless one has the correct parameter side information,
it is not possible to build an irregular smooth subdivision scheme.
While such schemes are useful for editing and texturing applica-
tions, they cannot be used for succinct representations because the
parameter side-information needed is excessive. In the case of nor-
mal meshes these issues are entirely circumvented in that all pa-
rameter information vanishes and the mesh is reduced to purely ge-
ometric, i.e., scalar in the normal direction, information.

Finally, we mention the connection to displacement maps [3],
and in particular normal displacement maps. These are popular
for modeling purposes and used extensively in high end render-
ing systems such as RenderMan. In a sense we are solving here
the associated inverse problem. Given some geometry, find a sim-
pler geometry and a set of normal displacements which together are
equivalent to the original geometry. Typically, normal displacement
maps are single level, whereas we aim to build them in a fully hi-
erarchical way. For example, single level displacements maps were
used in [15] to capture the fine detail of a 3D photography model.
Cohen et al. [2] sampled normal fields of geometry and maintained

these in texture maps during simplification. While these approaches
all differ significantly from our interests here, it is clear that maps
of this and related nature are of great interest in many contexts.

In independent work, Lee et al. pursue a goal similar to ours [17].
They introduce displaced subdivision surfaces which can be seen as
a two level normal mesh. Because only two levels are used, the base
domain typically contains more triangles than in our case. Also the
normal offsets are oversampled while in our case, the normal offsets
are critically sampled.

2 Normal Polylines
Before we look at surfaces and normal meshes, we introduce some
of the concepts using curves and normal polylines. A curve in
the plane is described by a pair of parametric functions s(t) =
(x(t), y(t))with t ∈ [0, 1]. We would like to describe the points on
the curve with a single scalar function. In practice one uses poly-
lines to approximate the function. Let l(p,p′) be the linear segment
between the points p and p′. A standard way to build a polyline
multiresolution approximation is to sample the curve at points sj,k
where sj,k = sj+1,2k and define the jth level approximation as

Lj =
⋃

0≤k<2j
l(sj,k, sj,k+1).

To move from Lj to Lj+1 we need to insert the points sj+1,2k+1
(Figure 2, left). Clearly this requires two scalars: the two coordi-
nates of sj+1,2k+1. Alternatively one could compute the difference
sj+1,2k+1 −m between the new point and some predicted point
m, say the midpoint of the neighboring points sj,k and sj,k+1.
This detail has a tangential component m − b and a normal com-
ponent b − sj+1,2k+1. The normal component is the geometric
information while the tangential component is the parameter infor-
mation. The way to build polylines that can be described with one
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Figure 2: Removing one point sj+1,2k+1 in a polyline multiresolu-
tion and recording the difference with the midpointm. On the left a
general polyline where the detail has both a normal and a tangen-
tial component. On the right a normal polyline where the detail is
purely normal.

scalar per point, is to make sure that the parameter information is
always zero, i.e., b = m, see Figure 2, right. If the triangle sj,k,
sj+1,2k+1, sj,k+1 is Isosceles, there is no parameter information.
Consequently we say that a polyline is normal if a multiresolution
structure exists where every removed point forms an Isosceles trian-
gle with its neighbors. Then there is zero parameter information and
the polyline can be represented with one scalar per point, namely
the normal component of the associated detail.

For a general polyline the removed triangles are hardly ever ex-
actly Isosceles and hence the polyline is not normal. Below we
describe a procedure to build a normal polyline approximation for
any continuous curve. The easiest is to start building Isosceles tri-
angles from the coarsest level. Start with the first base l(s0,0, s0,1),
see Figure 3. Next take its midpoint and check where the normal
direction crosses the curve. Because the curve is continuous, there
has to be at least one such point. If there are multiple pick any one.
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Figure 3: Construction of a normal polyline. We start with the
coarsest level and each time check where the normal to the midpoint
crosses the curve. For simplicity only the indices of the sj,k points
are shown and only certain segments are subdivided. The polyline
(0, 0)−(2, 1)−(3, 3)−(1, 1)−(0, 1) is determined by its endpoints
and three scalars, the heights of the Isosceles triangles.

Call this point s1,1 and define the first triangle. Now split the curve
into two parts and repeat the procedure on each subcurve. Each
time sj+1,2k+1 is found where the normal to the midpoint of sj,k
and sj,k+1 crosses the portion of the curve between sj,k and sj,k+1.
Thus any continuous curve can be approximated arbitrarily closely
with a normal polyline. The result is a series of polylines Lj all of
which are normal with respect to midpoint prediction. Effectively
each level is parameterized with respect to the one coarser level.
Because the polylines are normal, only a single scalar value, the
normal component, needs to be recorded for each point. We have a
polyline with no parameter information.

One can also consider normal polylines with respect to fancier
predictors. For example one could compute a base point and nor-
mal estimate using the well known 4 point rule. Essentially any
predictor which only depends on the coarser level is allowed. For
example one can also use irregular schemes [4]. Also one does not
need to follow the standard way of building levels by downsam-
pling every other point, but instead could take any ordering. This
leads to the following definition of a normal polyline:

Definition 1 A polyline is normal if a removal order of the points
exists such that each removed point lies in the normal direction from
a base point, where the normal direction and base point only de-
pend on the remaining points.

Hence a normal polyline is completely determined by a scalar com-
ponent per vertex.

Normal polylines are closely related to certain well known frac-
tal curves such as the Koch Snowflake1, see Figure 4. Here each
time a line segment is divided into three subsegments. The left and
right get a normal coefficient of zero, while the middle receives
a normal coefficient such that the resulting triangle is equilateral.
Hence the polylines leading to the snowflake are normal with re-
spect to midpoint subdivision.

Figure 4: Four normal polylines converging to the Koch snowflake.

1Niels Fabian Helge von Koch (Sweden, 1870-1924)

There is also a close connection with wavelets. The normal co-
efficients can be seen as a piecewise linear wavelet transform of
the original curve. Because the tangential components are always
zero there are half as many wavelet coefficients as there are origi-
nal scalar coefficients. Thus one saves 50% memory right away. In
addition of course the wavelets have their usual decorrelation prop-
erties. In the functional case the above transform corresponds to an
unlifted interpolating piecewise linear wavelet transform as intro-
duced by Donoho [6]. There it is shown that interpolating wavelets
with no primal, but many dual moments are well suited for smooth
functions. Unlike in the function setting, not all wavelets from the
same level j have the same physical scale. Here the scale of each
coefficient is essentially the length of the base of its Isosecles trian-
gle.

3 Normal Meshes

We begin by establishing terminology. A triangle mesh M is a
pair (P,K), where P is a set of N point positions P = {pi =
(xi, yi, zi) ∈ R3 | 1 ≤ i ≤ N}, and K is an abstract simplicial
complex which contains all the topological, i.e., adjacency infor-
mation. The complex K is a set of subsets of {1, . . . , N}. These
subsets come in three types: vertices {i}, edges {i, j}, and faces
{i, j, k}. Two vertices i and j are neighbors if {i, j} ∈ E . The
1-ring neighbors of a vertex i form a set V(i) = {j | {i, j} ∈ E}.

We can derive a definition of normal triangle meshes inspired
by the curve case. Consider a hierarchy of triangle meshes Mj
built using mesh simplification with vertex removals. These meshes
are nested in the sense that Pj ⊂ Pj+1. Take a removed vertex
pi ∈ Pj+1 \ Pj . For the mesh to be normal we need to be able to
find a base point b and normal directionN that only depend on Pj ,
so that pi − b lies in the direction N . This leads to the following
definition.

Definition 2 A mesh M is normal in case a sequence of vertex
removals exists so that each removed vertex lies on a line defined
by a base point and normal direction which only depends on the
remaining vertices.

Thus a normal mesh can be described by a small base domain and
one scalar coefficient per vertex.

As in the curve case, a mesh is in general not normal. The chance
that the difference between a removed point and a predicted base
point lies exactly in a direction that only depends on the remaining
vertices is essentially zero. Hence the only way to obtain a normal
mesh is to change the triangulation. We decide to use semi-regular
meshes, i.e., meshes whose connectivity is formed by successive
quadrisection of coarse base domain faces.

As in the curve setting, the way to build a normal mesh is to
start from the coarse level or base domain. For each new vertex we
compute a base point as well as a normal direction and check where
the line defined by the base point and normal intersects the surface.
The situation, however, is much more complex than in the curve
case for two reasons: (1) There could be no intersection point. (2)
There could be many intersection points, but only one correct one.

In case there are no intersection points, strictly speaking no fully
normal mesh can be built from this base domain. If that happens,
we relax the definition of normal meshes some and allow a small
number of cases where the new points do not lie in the normal di-
rection. Thus the algorithm needs to find a suitable non-normal lo-
cation for the new point. In case there are many intersection points
the algorithm needs to figure out which one is the right one. If the
wrong one is chosen the normal mesh will start folding over itself
or leave creases. Any algorithm which blindly picks an intersection
point is doomed.



Parameterization In order to find the right piercing point or
suggest a good alternate, one needs to be able to easily navigate
around the surface. The way to do this is to build a smooth pa-
rameterization of the surface region of interest. This is a basic
building block of our algorithm. Several parameterization meth-
ods have been proposed and our method takes components from
each of them: mesh simplification and polar maps from MAPS [18],
patchwise relaxation from [9], and a specific smoothness functional
similar to the one used in [10] and [20]. The algorithm will use lo-
cal parameterizations which need to be computed fast and robustly.
Most of them are temporary and are quickly discarded unless they
can be used as a starting guess for another parameterization.

Consider a region R of the mesh homeomorphic to a disc that
we want to parameterize onto a convex planar region B, i.e., find a
bijective map u : R → B. The map u is fixed by a boundary con-
dition ∂R → ∂B and minimizes a certain energy functional. Sev-
eral functionals can be used leading to, e.g., conformal or harmonic
mappings. We take an approach based on the work of Floater [10].
In short, the function u needs to satisfy the following equation in
the interior:

u(pi) =
∑

k∈V(i)

αiku(pk), (1)

where V(i) is the 1-ring neighborhood of the vertex i and the
weights αik come from the shape-preserving parameterization
scheme [10]. The main advantage of the Floater weights is that
they are always positive, which, combined with the convexity of
the parametric region, guarantees that no triangle flipping can oc-
cur within the parametric domain. This is crucial for our algorithm.
Note that this is not true in general for harmonic maps which can
have negative weights. We use the iterative biconjugate gradient
method [12] to obtain the solution to the system (1). Given that we
often have a good starting guess this converges quickly.

Algorithm Our algorithm consists of 7 stages which are de-
scribed below, some of which are shown for the molecule model
in Figure 5. The molecule is a highly detailed and curved model.
Any naive procedure for finding normal meshes is very unlikely to
succeed.

The first four stages of the algorithm prepare the ground for the
piercing procedure and build the net of curves splitting the original
mesh into triangular patches that are in one-to-one correspondence
with the faces of the base mesh, i.e., the coarsest level of the semi-
regular mesh we build.

1. Mesh simplification: We use the Garland-Heckbert [11]
simplification based on half-edge collapses to create a mesh hierar-
chy (Pj,Kj). We use the coarsest level (P0,K0) as an initial guess
for our base domain (Q0,K0). The first image of Figure 5 shows
the base domain for the molecule.

2. Building an initial net of curves: The purpose of this step
is to connect the vertices of the base domain with a net of non in-
tersecting curves on the different levels of the mesh simplification
hierarchy. This can easily be done using the MAPS parameteri-
zation [18]. MAPS uses polar maps to build a bijection between a
1-ring and its retriangulation after the center vertex is removed. The
concatenation of these maps is a bijective mapping between differ-
ent levels (Pj,Kj) in the hierarchy. The desired curves are simply
the image of the base domain edges under this mapping. Because
of the bijection no intersection can occur. Note that the curves start
and finish at a vertex of the base domain, but need not follow the
edges of the finer triangulation, i.e., they can cut across triangles.
These curves define a network of triangular shaped patches corre-
sponding to the base domain triangles. Later we will adjust these
curves on some intermediate level and again use MAPS to propa-
gate these changes to other levels. The top middle image of Figure 5
shows these curves for some intermediate level of the hierarchy.

3. Fixing the global vertices: A normal mesh is almost com-
pletely determined by the base domain. One has to choose the base
domain vertices Q0 very carefully to reduce the number of non-
normal vertices to a minimum. The coarsest level of the mesh sim-
plification P0 is only a first guess. In this section we describe a
procedure for repositioning the global vertices qi with {i} ∈ K0.
We impose the constraint that the qi needs to coincide with some
vertex pk of the original mesh, but not necessarily pi.

The repositioning is typically done on some intermediate level j.
Take a base domain vertex qi. We build a parameterization from
the patches incident to vertex qi to a disk in the plane, see Fig-
ure 6. Boundary conditions are assigned using arclength parame-
terization, and parameter coordinates are iteratively computed for
each level j vertex inside the shaded region. It is now easy to re-
place the point qi with any level point fromPj in the shaded region.
In particular we let the new q′i be the point of Pj that in the param-
eter domain is closest to the center of the disk. The exact center of
the disk, in general, does not correspond to a vertex of the mesh.

Once a new position q′i is chosen, the curves can be redrawn by
taking the inverse mapping of straight lines from the new point in
the parameter plane. One can keep iterating this procedure, but we
found that if suffices to cycle once through all base domain vertices.

We also provide for a user controlled repositioning. Then the
user can replace the center vertex with any Pj point in the shaded
region. The algorithm again uses the parameterization to recompute
the curves from that point.

The top right of Figure 5 shows the repositioned vertices. Notice
how some of them like the rightmost one have moved considerably.
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Figure 6: Base domain vertex repositioning. Left: original patches
around qi, middle: parameter domain, right: repositioned qi and
new patch boundaries. This is replaced with the vertex whose pa-
rameter coordinate are the closest to the center. The inverse map-
ping (right) is used to find the new position q′i and the new curves.

4. Fixing the global edges: The image of the global edges
on the finest level will later be the patch boundaries of the normal
mesh. For this reason we need to improve the smoothness of the as-
sociated curves at the finest level. We use a procedure similar to [9].
For each base domain edge {i, k}we consider the region formed on
the finest level mesh by its two incident patches. Let l andm be the
opposing global vertices. We then compute a parameter function
ρ within the diamond-shaped region of the surface. The boundary
condition is set as ρ(qi) = ρ(qk) = 0, ρ(ql) = 1, ρ(qm) = −1,
with linear variation along the edges. We then compute the param-
eterization and let its zero level set be our new curve. Again one
could iterate this procedure till convergence but in practice one cy-
cle suffices. The curves of the top right image in Figure 5 are the
result of the curve smoothing on the finest level.

Note that a similar result can be achieved by allowing the user to
position the global vertices and draw the boundaries of the patches
manually. Indeed, the following steps of the algorithm do not de-
pend on how the initial net of surface curves is produced.



Figure 5: The entire procedure shown for the molecule model. 1. Base domain. 2. Initial set of curves. 3. Global vertex repositioning 4.
Initial Parameterization 5. Adjusting parameterization 6. Final normal mesh. (HIV protease surface model courtesy of Arthur Olson, The
Scripps Research Institute)

5. Initial parameterization: Once the global vertices and
edges are fixed, one can start filling in the interior. This is done
by computing the parameterization of each patch to a triangle while
keeping the boundary fixed. The parameter coordinates from the
last stage can serve as a good initial guess. We now have a smooth
global parameterization. This parameterization is shown in the bot-
tom left of Figure 5. Each triangle is given a triangular checker-
board texture to illustrate the parameterization.

6. Piercing: In this stage of the algorithm we start building
the actual normal mesh. The canonical step is for a new vertex of
the semi-regular mesh to find its position on the original mesh. In
quadrisection every edge of level j generates a new vertex on level
j + 1. We first compute a base point using interpolating Butter-
fly subdivision [8] [24] as well as an approximation of the normal.
This defines a straight line. This line may have multiple intersec-
tion points in which case we need to find the right one, or it could
have none, in which case we need to come up with a good alternate.

Suppose that we need to produce the new vertex q that lies
halfway along the edge {a, c} with incident triangles {a, c,b} and
{c, a,d}, see Figure 7. Let the two incident patches form the re-
gion R.

Build the straight line L defined by the base point s predicted by
the Butterfly subdivision rule [24] and the direction of the normal
computed from the coarser level points. We find all the intersection
points of L with the regionR by checking all triangles inside.

If there is no intersection we take the point v that lies midway
between the points a and c in the parameter domain: u(v) =
(u(a) + u(c))/2. This is the same point a standard parameteri-
zation based remesher would use. Note that in this case the detail
vector is non-normal and its three components need to be stored.

In the case when there exist several intersections of the mesh re-
gion R with the piercing line L we choose the intersection point
that is closest to the point u(v) in the parameter domain. Let us
denote by u(q) the parametric coordinates of that piercing point.
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Figure 7: Upper left: piercing, the Butterfly point is s, the surface is
pierced at the point q, the parametrically suggested point v lies on
the curve separating two regions of the mesh. Right: parameter do-
main, the pierced point falls inside the aperture and gets accepted.
Lower left: the parameterization is adjusted to let the curve pass
through q.

We accept this point as a valid point of the semi-regular mesh if
‖u(q) − u(v)‖ < κ‖u(a) − u(v)‖, where κ is an “aperture” pa-
rameter that specifies how much the parameter value of a pierced



point is allowed to deviate from the center of the diamond. Oth-
erwise, the piercing point is rejected and the mesh takes the point
with the parameter value u(v), resulting in a non-normal detail.

7. Adjusting the parameterization: Once we have a new
piercing point, we need to adjust the parameterization to reflect this.
Essentially, the adjusted parameterization u should be such that the
piercing point has the parameters u(v) =: u(q). When impos-
ing such an isolated point constraint on the parameterization, there
is no mathematical guarantee against flipping. Hence we draw a
new piecewise linear curve through u(q) in the parameter domain.
This gives a new curve on the surface which passes through q, see
Figure 7. We then recompute the parameterization for each of the
patches onto a triangle separately. We use a piecewise linear bound-
ary condition with the half point at q on the common edge.

When all the new midpoints for the edges of a face of level j
are computed, we can build the faces of level j + 1. This is done
by drawing three new curves inside the corresponding region of the
original mesh, see Figure 8. Before that operation happens we need
to ensure that a valid parameterization is available within the patch.
The patch is parameterized onto a triangle with three piecewise lin-
ear boundary conditions each time putting the new points at the
midpoint. Then the new points are connected in the parameter do-
main which allows us to draw new finer level curves on the original
mesh. This produces a metamesh similar to [16], so that the new
net of curves replicates the structure of the semi-regular hierarchy
on the surface of the original. The construction of the semi-regular
mesh can be done adaptively with the error driven procedure from
MAPS [18]. An example of parameterization adjustment after two
levels of adaptive subdivision is shown in the bottom middle of Fig-
ure 5. Note that as the regions for which we compute parameteriza-
tions become smaller, the starting guesses are better and the solver
convergence becomes faster and faster.

a b

c u(a) u(c)

u(b)

Figure 8: Face split: Quadrisection in the parameter plane (left)
leads to three new curves within the triangular patch (right).

The aperture parameter κ of the piercing procedure provides
control over how much of the original parameterization is preserved
in the final mesh and consequently, how many non-normal details
will appear. At κ = 0 we build a non-normal mesh entirely based
on the original global parameterization. At κ = 1 we attempt to
build a purely normal mesh independent of the parameterization.
In our experience, the best results were achieved when the aper-
ture was set low (0.2) at the coarsest levels, and then increased to
0.6 on finer levels. On the very fine levels of the hierarchy, where
the geometry of the semi-regular meshes closely follows the origi-
nal geometry, one can often simply use a naive piercing procedure
without parameter adjustment.

One may wonder if the continuous readjustment of parameteri-
zations is really necessary. We have tried the naive piercing pro-
cedure without parameterization from the base domain and found
that it typically fails on all models. An example is Figure 9 which
shows 4 levels of naive piercing for the torus starting from a 102
vertex base mesh. Clearly, there are several regions with flipped
and self-intersecting triangles. The error is about 20 times larger
than the true normal mesh.

Figure 9: Naive piercing procedure. Clearly, several regions have
flipped triangles and are self-intersecting.

Dataset Size Base Normal Not normal % L2 Time
mesh size (%) error (min)

Feline 49864 156 40346 729 (1.8%) .015 4
Molecule 10028 37 9521 270 (2.8%) .075 1.5
Rabbit 16760 33 8235 196 (2.4%) .037 2
Torus3 5884 98 5294 421 (8.0%) .03 3
Skull 20002 112 25376 817 (3.2%) .02 2.5
Horse 48485 234 59319 644 (1.1%) .004 6.8

Table 1: Summary of normal meshing results for different models.
The normal mesh is computed adaptively and contains roughly the
same number of triangles as the original mesh. The relative L2

errors are computed with the I.E.I.-CNR Metro tool. The times are
reported on a 700MHz Pentium III machine.

4 Results
We have implemented the algorithms described in the preceding
section, and performed a series of experiments in which normal
meshes for various models were built. The summary of the results
is given in Table 1. As we can see from the table, the normal semi-
regular meshes have very high accuracy and hardly any non normal
details.

One interesting feature of our normal meshing procedure is the
following: while the structure of patches comes from performing
simplification there are far fewer restrictions on how coarse the
base mesh can be. Note for example that the skull in Figure 1 was
meshed with the tetrahedron as base mesh. This is largely due to
the robust mesh parameterization techniques used in our approach.

Figure 10 shows normal meshes for rabbit, torus, feline, and
skull, as well as close-up of feline (bottom left) normal mesh. Note
how smooth the meshes are across global edges and global vertices.
This smoothness mostly comes from the normality, not the param-
eterization. It is thus an intrinsic quantity.

One of the most interesting observations coming from this work
is that locally the normal meshes do not differ much from the non-
normal ones, while offering huge benefits in terms of efficiency of
representation. For example, Table 2 shows how the “aperture pa-
rameter” κ that governs the construction of normal meshes affects
the number of detail coefficients with non-trivial tangential com-
ponents for the model of the three hole torus (these numbers are
typical for other models as well). In particular, we see that already
a very modest acceptance strategy (κ = 0.2) gets rid of more than
90% of the tangential components in the remeshed model, and the
more aggressive strategies offer even more benefits without affect-
ing the error of the representation.

5 Summary and Conclusion
In this paper we introduce the notion of normal meshes. Normal
meshes are multiresolution meshes in which vertices can be found
in the normal direction, starting from some coarse level. Hence
only one scalar per vertex needs to be stored. We presented a robust



κ normal error (10−4)

0 0% 1.02
0.2 91.9% 1.05
0.4 92.4% 1.04

best 98.3% 1.02

Table 2: The relation between the acceptance strategy during the
piercing procedure and the percentage of perfectly normal details
in the hierarchy. The original model has 5884 vertices, all the nor-
mal meshes have 26002 vertices (4 levels uniformly), and the base
mesh contained 98 vertices. The best strategy in the last line used
κ = 0.2 on the first three levels and afterward always accepted the
piercing candidates.

algorithm for computing normal semi-regular meshes of any input
mesh and showed that it produces very smooth triangulations on a
variety of input models.

It is clear that normal meshes have numerous applications. We
briefly discuss a few.
Compression Usually a wavelet transform of a standard mesh
has three components which need to be quantized and encoded. In-
formation theory tells us that the more non uniform the distribution
of the coefficients the lower the first order entropy. Having 2/3 of
the coefficients exactly zero will further reduce the bit budget. From
an implementation viewpoint, we can almost directly hook the nor-
mal mesh coefficients up to the best known scalar wavelet image
compression code.
Filtering It has been shown that operations such as smoothing,
enhancement, and denoising can be computed through a suitable
scaling of wavelet coefficients [7]. In a normal mesh any such al-
gorithm will require only 1/3 as many computations. Also large
scaling coefficients in a standard mesh will introduce large tangen-
tial components leading to flipped triangles. In a normal mesh this
is much less likely to happen.
Texturing Normal semi-regular meshes are very smooth inside
patches, across global edges, and around global vertices even when
the base domain is exceedingly coarse, cf. the skull model. The im-
plied parameterizations are highly suitable for all types of mapping
applications.
Rendering Normal maps are a very powerful tool for decora-
tion and enhancement of otherwise smooth geometry. In particular
in the context of bandwidth bottlenecks it is attractive to be able to
download a normal map into hardware and only send smooth co-
efficient updates for the underlying geometry. The normal mesh
transform effectively solves the associated inverse problem: con-
struct a normal map for a given geometry.

The concept of normal meshes opens up many new areas of re-
search.
• Our algorithm uses interpolating subdivision to find the base

point. Building normal meshes with respect to approximating
subdivision is not straightforward.

• The theoretical underpinnings of normal meshes need to be
studied. Do continuous variable normal descriptions of surfaces
exist? What about stability? What about connections with cur-
vature normal flow which acts to reduce normal information?

• We only addressed semi-regular normal meshes here, while the
definition allows for the more flexible setting of progressive ir-
regular mesh hierarchies.

• Purely scalar compression schemes for geometry need to be
compared with existing coders.

• Generalize normal meshes to higher dimensions. It should be
possible to represent a M dimensional manifold in N dimen-
sions with N −M variables as opposed to the usual N .

• The current implementation only works for surfaces without
boundaries and does not deal with feature curves. We will ad-
dress these issues in our future research.
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Figure 10: Colorplate.


