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Kiril Vidimče Alexandre Kaspar Ye Wang Wojciech Matusik
Massachusetts Institute of Technology

Figure 1. Objects designed using Foundry. Left: a paddle with a perforated blade and a ‘sweet’ spot on its smooth side. Center: a simulation-driven
ski design with retro-reflective surfaces. Right: a trycycle ‘tweel’ with lattice spokes for lateral strength and foam for improved suspension.

ABSTRACT
We demonstrate a new approach for designing functional mate-
rial definitions for multi-material fabrication using our system
called Foundry. Foundry provides an interactive and visual
process for hierarchically designing spatially-varying material
properties (e.g., appearance, mechanical, optical). The result-
ing meta-materials exhibit structure at the micro and macro
level and can surpass the qualities of traditional composites.
The material definitions are created by composing a set of
operators into an operator graph. Each operator performs a
volume decomposition operation, remaps space, or constructs
and assigns a material composition. The operators are imple-
mented using a domain-specific language for multi-material
fabrication; users can easily extend the library by writing their
own operators. Foundry can be used to build operator graphs
that describe complex, parameterized, resolution-independent,
and reusable material definitions. We also describe how to
stage the evaluation of the final material definition which in
conjunction with progressive refinement, allows for interac-
tive material evaluation even for complex designs. We show
sophisticated and functional parts designed with our system.
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INTRODUCTION
Multi-material 3D printing is an emerging technology for ver-
satile prototyping and end-use part manufacturing. It enables
fine material composition control at high resolution with fea-
ture sizes as low as 15 microns. Current multi-material 3D
printers print with up to six distinct materials (e.g., Connex
J750) out of a library of over twenty materials with diverse
appearance, mechanical, optical and even bio-safe properties.
The ability to vary the material composition at such preci-
sion supports numerous applications such as fabricating opti-
cal fibers [3, 28], lenticular prints [38], composite materials
that maximize stiffness, strength and energy dissipation [42]
or heat and electricity [39], biomimetic composite materi-
als [24], actuated and deformable characters [34], colored and
deformable characters for stop-motion animation [16], self-
assembled objects [37] and functionally graded materials [26].

As compared to single material 3D printing where boundary
representations are sufficient to describe the geometry and vol-
ume of the fabricated part, multi-material fabrication requires
the user to specify the material composition over the entire
volume at resolutions of up to 2,000 DPI. In its simplest form,
a multi-material part could consist of a limited and discrete
number of sub-parts each of which is assigned a single mate-
rial. This is the approach taken by software that is bundled
with existing commercial multi-material 3D printers.

By its very nature, multi-material printing of functional parts
requires volumetric design of the part’s underlying material
composition. Furthermore, in order to push the boundaries of
fabricated materials, we need to be able to specify structures
at different spatial scales taking inspiration from materials that
are found in nature. For example, an extremely tough and light



material of a human bone (Figure 2) exhibits different struc-
tures at different spatial scales that occupy the same volume.
We believe that creating and reproducing these multi-scale
structures will require hierarchical design tools.

Current modeling and material definition approaches are
mostly driven by boundary representations used by traditional
CAD and modeling packages. Tools such as Netfabb [25] or
Materialise 3-Matic [21] can generate low-level geometry such
as lattices or fine textures, but they cannot deal with hierar-
chical material composition or complex material assignments
like gradients. On the other side, there are many volumetric
modeling approaches described in the computer graphics com-
munity, but they are largely motivated by appearance-driven
design and make appearance-driven decisions.

Figure 2. Biological materials such as the one made by the bone tissue
can often be described in terms of a multi-scale hierarchy.

Building on the ideas described by OpenFab [41], we have
developed Foundry – an interactive system for hierarchical
authoring of spatially-varying, multi-material objects. Unlike
OpenFab which is only suitable for experts, Foundry targets
non-technical users by introducing the notion of hierarchical
and modular material composition using a graph of operator
nodes. This is a familiar representation reminiscent of shade
trees [5] and image compositing tools [31]. In our author-
ing workflow, users start with an initial volume of the object
defined by its boundary representation. They then use a vi-
sual interface to specify the material composition within the
volume by building the operator graph (see Figure 3).

Foundry pushes the state-of-the-art along three axes simulta-
neously: (1) it enables non-technical users to create complex
multi-material compositions, (2) it enables substantial increase
in the complexity of multi-material designs as witnessed by
our results and (3) it increases efficiencies in the design pro-
cess by allowing users to build complex multi-material designs
in minutes where the equivalent design would have taken many
hours or even days with alternative tools. For instance, the
initial design of the tweel shown in Figure 1 was created in
less than an hour in Foundry; the same design would have
taken a skilled programmer multiple days by using OpenFab.

We have used the system extensively to build a number of 3D
printed objects and in conjunction created a core library of
operators that we describe both in the paper and more exhaus-
tively in the appendix. The operators can be hierarchically
composed and perform one of three functions: decompose a
volume into subvolumes, remap subvolumes to simplify the do-
main over which other (composed) operators will operate on,

or construct and assign material compositions to subvolumes.
Expert users can augment the library with new operators us-
ing a domain-specific language. The underlying graph-based
representation is efficient (measured in KB) and similarly to
OpenFab, printer and resolution-independent.

We achieve high performance and maintain interactive rates
in Foundry by staging the execution of its OpenFab-like fab-
rication pipeline. Additionally, we use hierarchical (cache-
evict) acceleration data structures to speed up global queries,
and integrate progressive refinement and user-driven working-
volume reduction techniques.

We evaluate Foundry by designing and fabricating several
functional objects with hierarchical material structures and by
conducting an informal case study.

In summary, Foundry is the first system designed specifically
for interactive hierarchical multi-material design of functional
parts at printer resolution. Our three key contributions are:

• A compact operator graph representation to visually, in-
tuitively, and efficiently specify modular material compo-
sitions in a expressive and hierarchical manner.
• A description of our operator library and classification

which enable a substantial increase in the complexity of
achievable designs.
• An interactive preview system at native resolution of a

high-resolution multi-material printer (15 microns) en-
abling complex material design and exploration.

RELATED WORK

Procedural Volume Modeling: Volumetric models can be
efficiently created with procedural modeling. The material
density can be computed using a function [11] or by combining
simpler operators [29]. Cutler et al. [7] specifically address
authoring volumetric multi-material models. However, their
system does not provide an interactive design workflow and it
focusses on creating virtual, non-fabricable models. Takayama
et al. [36] propose an interactive system for authoring solid ob-
jects. Their representation is based on diffusion surfaces that
require relatively sparse user input but adding detail is more
difficult. Recently, Ijiri et al. [17] propose a semi-automated
solid modeling system that fits geometric primitives to CT
volume data. Multiscale vector volumes can describe volumes
with complex internal structures using a binary tree of signed
distance functions [43]. Foundry in comparison uses a more
general volume decomposition approach. A recent system,
Symvol by Uformia [40], allows for procedural modeling of
microstructures in the context of single material 3D printing.
An alternative approach is to use multi-phase implicit func-
tions to model non-intersecting subvolumes as shown by Yuan
et al [46]. Finally, Monolith [22] is a volumetric modeler that
uses a stack of geometry and material assignment layers simi-
lar to image layers in imaging software. Monolith uses existing
geometric models as constraints but generally assumes that
the object is modeled via volumetric operations. In contrast,
Foundry expects one or more boundary representations as an
initial description of the object but then provides a powerful
set of operators to further refine the geometric and material



Figure 3. The Foundry UI: an operator browser (left), an operator property editor (right), a graph widget for manipulating the operator graph (top),
and traditional 3D views and slice/volume preview panels (bottom).

representation. Unlike Monolith, our focus is entirely on multi-
material design and thus the underlying representation, the
workflow and our library of operators have been optimized for
interactive multi-material design at printer resolution.

Data-driven Solid Texture Synthesis: Data-driven meth-
ods are an alternative to procedural volume modeling. 3D
volumes can be synthesized from 2D or 3D texture exemplars.
Ghazanfarpour and Dischler [12, 13] explore parametric ap-
proaches for solid texture synthesis. Jagnow et al. [18] analyze
a 2D texture exemplar to synthesize a solid texture with a
similar particle distribution. Wei [45] adapts a 2D neighbor-
matching method for solid synthesis and Kopf et al. [19] im-
prove it with a global optimization approach and an additional
histogram-matching step. In lapped solid textures [35], a solid
texture exemplar is applied to a tetrahedralization of an ob-
ject. In addition, an authoring tool is developed that allows
spatial variations and anisotropy. Dong et al. [9] extend this
approach to support lazy evaluation, making the system more
efficient. Another way to reduce storage requirements is by
using vector solid textures [44]. Recent work tries to generate
micro-structures: Dumas et al. [10] use exemplar-based synthe-
sis to generate structural patterns. Both Panetta et al. [27] and
Schumacher et al. [33] optimize the material micro-structure
and its tiling to achieve elastic properties. Our system supports
tiled solid textures in addition to procedural solid textures.

Material Specification for 3D Printing: Currently, multi-
material objects are specified via separate boundary represen-
tation (an STL file) for each material. However, this speci-
fication method is very inefficient and limiting. The Addi-
tive Manufacturing File (AMF) Format [1] is a new standard
that allows some proceduralism for direct specification of
multi-material objects. The recent OpenFab [41] program-
ming model and architecture provides an efficient and scalable
way of directly specifying multi-material objects. Our system
and design workflow builds upon this work. Finally, multi-
material objects can also be defined by their desired functional

characteristics rather than material composition. Spec2Fab
[4] proposes the first attempt to build a functional specification
pipeline. Spec2Fab’s reducer tree exhibits a similar spatial
decomposition approach to the one employed by Foundry.

Procedural Shading: Our research draws from both aca-
demic and commercial work on programmable rendering
pipelines. Our underlying representation is inspired by Cook’s
Shade Trees [5]. A similar approach has been employed for
2D illustrations [20]. The system architecture and program-
ming model have similarities to RenderMan [6] and shading
languages [15]. Our authoring tool and workflow is partly
inspired by the current commercial tools for shading design [2,
30]. There are, however, some key differences due to the fact
that our system is geared for the design of volumes rather
than surfaces. First, our representation makes distance query
operators first class citizens. This also requires different ac-
celeration data structures and staging of computation in order
to make the system interactive. Finally, our design workflow
requires tools for volume inspection and volume rendering.

FOUNDRY
We now present the key concepts and modules behind Foundry.
We begin with an overview of the underlying framework, fol-
lowed by the guiding principles employed when designing our
system. We describe the typical user workflow for building a
hierarchical operator graph that describes complex material
definitions. We describe our library of operators, their clas-
sification and relation with real world materials. We discuss
the importance of a rich set of distance queries that we used
for our operators. We describe our execution model and how
it can be staged to enable interactive design. Finally, in the
results section we evaluate our system with multiple examples.

System Architecture Overview
Foundry was built on top of a programmable pipeline for multi-
material fabrication similar to OpenFab [41]. The system that
implements this pipeline is called a fabricator. To fabricate an



Figure 4. Sample session starts by importing a 3D model of a bike seat (left), then constructs and iterates on the operator graph (top row) to first
produce a single material volume (first bottom). It uses a stratum operator to create two different colored subspaces (second column) inspected in slice
preview (second bottom) and adds a lattice in the interior shell (third column). Final volume is inspected using the box widget (bottom right).

object, its initial volume is defined via a boundary represen-
tation. The object’s surface is tessellated and then optionally
displaced. The resulting volume is voxelized and for each
voxel the material composition is determined. The surface
displacement and volume material composition stages of the
pipeline are fully programmable and exposed via fablets —
programs written in OpenFL, a C-like, domain-specific lan-
guage. OpenFL exposes a streaming, kernel-like programming
model where conceptually, a single sample is evaluated at a
time. Users implement the surface phase of the fablet which
determines optional displacements. These displacements in-
troduce minute, high-frequency surface textures that would
be prohibitive to model via traditional modeling techniques.
Additionally, the user implements the volume phase of the fa-
blet which determines the material composition throughout the
object’s volume. To simplify defining complex, heterogeneous
material compositions, the pipeline provides a key abstraction:
users output arbitrary material compositions throughout the
object’s volume; the fabricator uses dithering to distribute the
materials locally while achieving a single material per voxel
and minimizing error. The final rasters are transmitted to a 3D
printer via device-specific backends.

Design Principles
Our high-level goal was to build a system that enables quick
exploration of the design space of multi-material fabrication.
We achieve this with the following design principles:

Expressiveness: Hierarchical, heterogeneous material def-
initions can be very complex and designing them from scratch
is time consuming. Our system introduces key operators that
serve as building blocks and, when composed together, form
complex material definitions. Some of these operators mimic
materials that already exist while others are more general and
can be used to hierarchically decompose the object’s volume,
optionally remap its coordinate system and then construct and
assign material compositions for each subvolume. We describe
these operator classifications in the next sections.

Extensibility: The operators in Foundry are implemented
using OpenFL and thus, new operators can be easily developed,
tested and refined. When developing new operators, the user
can optionally implement a custom 3D widget via a plugin
architecture exposed by the Foundry framework. Foundry will

automatically detect, introspect and expose any new operators
and associated 3D widgets to the user via its GUI.

Interactivity: Foundry was designed to provide an interac-
tive experience. With each operator graph change, a meta-
compiler converts the operator graph into an OpenFL-based
description, thus forming a fablet. All operator property val-
ues are then bound and the fablet is JIT compiled to machine
code. The fabricator can then evaluate the resulting fablet
in a streaming fashion and provide a volumetric display of
the material composition output. Initial results are provided
quickly and then refined to the desired quality and printer res-
olution. We employ several strategies to optimize this process
as described in the execution section.

Workflow
A modeling session starts by importing some existing geome-
try. The user then constructs the material composition by ma-
nipulating the operator graph (top section of Figure 3) while
previewing and inspecting the resulting volume. As an exam-
ple, Figure 4 follows a simple modeling session for a bike seat
which starts with a single white material composition. We add
a stratum operator to divide the structure into two shells. The
external shell remains white and the internal one is assigned a
new red material composition. We switch to the slice preview
mode to visualize the internal volume. Finally, we add a rect-
angular lattice operator, set its filling composition to void, and
use the red composition for its edges and vertices. The new
operator is then connected to the internal shell, thus replacing
the previous red composition, and we use the box widget to
visualize the composition.

similar to Shade Trees [5]. Each node is a parameterized proce-
dure with a set of input and output properties. Input properties
have default values which the user can override via Foundry’s
interface. They can also be overridden by connecting them to
output properties of other nodes.

Decompose, remap and assign: when building material
definitions, a common pattern has emerged: the user typically
uses a chain of decompose→ remap→ construct and assign
material composition operators (see Figure 5). These chains of
nodes are then nested and instanced in a hierarchical fashion.
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Figure 5. Typical operator work flow. The object’s volume is decom-
posed into subvolumes. The space is optionally remapped. A mate-
rial composition is constructed using void spaces, simple material-based
compositions or complex compositions described using existing opera-
tors. The final material compositions are assigned to each subvolume.

(a) 3D model surface (b) Slice mode

(c) Volume mode (d) Crop-box

(e) High resolution crop (f) Wedge tool
Figure 6. Foundry can preview the material composition constructed
from the initial geometric input shown in a). Slice and volume preview
are shown in b) and c) respectively. The region of interest can be re-
stricted as shown in d) and e). Once preview results are generated, they
can be analyzed further, e.g., with the wedge tool shown in f).

Interactive exploration: the multi-scale nature of com-
plex material compositions requires an equivalent multi-scale
design exploration process. Users typically start with macro-
structures and refine details iteratively, introducing new layers
in the hierarchy. For volumetric exploration, we provide two
preview modes: the user can either view individual slices and
interactively browse through them with a slider or the whole
voxelized volume can be explored using box and wedge ma-
nipulators that carve holes in the volume (therefore enabling
the visualization of internal compositions) as illustrated in
Figure 6.

The system ensures interactivity via progressive refinement or
direct control of the preview resolution. The parameter space
of operators can be sampled interactively with continuous
sliders that automatically update the graph and produce direct
visual feedback. Further implementations details are provided
in the execution section.

OPERATORS AND MATERIALS
Based on our experience of designing multi-material func-
tional parts, we propose and implement a set of over 100
different operators. The set provides a powerful basis for ma-
terial design. We discuss their classification here. For a more
detailed description, please see the supplementary material.

Operator classification
Users typically start by decomposing the volume into sub-
spaces, then apply remappings to transform the coordinates
and eventually assign a material composition to each of the
regions of interest. Some of the operators in our library are
specific to only one class of operations but often combine two
or even all three functionalities into a single operator. For
example, most of our decomposition operators also provide a
way to directly assign a material composition to each subspace,
and others remap and normalize each subspace to make further
decomposition easier. Our library contains additional utility
operators including mathematic operations, noise functions,
texture manipulation and color conversions.

Decomposition Operators
Decomposition operators subdivide the initial volume into
subvolumes (Figure 7, seats a to d). For instance, an operator
may stratify the object by performing a signed distance func-
tion query from the object’s surface. The volume can then be
decomposed into a subvolume that is within a given distance
of the surface and another that’s further inside. This can be
used to construct a coating of a given thickness that surrounds
a core material. When implementing material definitions that
construct several layers of materials (e.g., onion layers), these
operators can be nested to decompose the volume into multiple
stratifications. Another example decomposition operator is the
tiling honeycomb operator which decomposes the space into
individual truncated hexagonal prisms.

Distance Decomposition: We provide distance-based oper-
ators that can decompose the space based on a traditional
distance function query from the surface. We also allow for
full decoupling of the initial boundary representation used for
the object and the distance queries; the distance queries can be
made from associated (1) surfaces, (2) piecewise linear curves
(e.g., skeletons), (3) splines or (4) points, the latter resulting
in spherical decomposition.

Geometric Decomposition: Geometric operators decompose
the space using simple geometric primitives to partition the
volume into two subvolumes (inside vs. outside).

Lattice Decomposition: These operators subdivide the space
into uniform grids and tilings. We can define these subdivi-
sions both in R2 (rectilinear, hexagonal, triangular) and in R3

(hexahedral, tetrahedral). Different outputs are generated: (1)
continuous subspaces for the cells with normalized coordinates
and origin at the center of the cell, (2) discrete cell indices that
identify each cell, and (3) regions of interest within the cells
such as lattice edges, vertices or filling space.

Remapping Operators
Remap operators remap the underlying space into a different
coordinate system. For instance, an operator that constructs a



(a) Surface distance (b) Planar split (c) Simple geometry (d) Rectangular lattice (e) Rectilinear grid (f) Remapped grid

(g) Linear gradient (h) 3D alternating tiles (i) Fiber sandwich (j) Parametric marble texture
Figure 7. Illustration of various decomposition, remapping and construct/assign operators. The decompositions operators (a,b,c,d) use distinct color
compositions to distinguish each subspace. The rectilinear grid of (e) is transformed into the cylindrical one of (f) using a single remapping operator.
The construct/assign operators (g,h,i,j) display common material constructions from gradient (g) to composite (h,i), and even parametric textures (j).

classical hexagonal foam material may assume that it operates
on a rectilinear grid. When using this operator on a cylin-
drical object such as a tire, the user may prefer to have the
hexagonal pattern aligned with the tire curvature. By inserting
a cylindrical to rectilinear remap operator into the graph, an
existing foam operator can achieve this alignment. Similarly,
when embedding fibers in the tire thread, in order to achieve
cylindrical alignment of the fibers we can simply remap the
space before connecting a traditional fiber composite operator.
We have implemented operators that remap between Cartesian
and non-Cartesian coordinates (spherical, cylindrical) or apply
general linear transforms (see Figure 7 (e) and (f)).

Construct and Assign Operators
We provide operators that construct simple homogeneous mate-
rial compositions from existing materials or null compositions.
Other operators construct sophisticated hierarchical and het-
erogeneous material compositions such as patterns, traditional
composites, cellular materials or various application-specific
material compositions (Figure 7, skulls g to j). We leverage
the abstraction exposed by the underlying system architecture
where the material composition output from the operator can
be an arbitrary and continuous linear combination of material
and material quantity pairs. The back-end of the fabricator
will distill the discrete material assignments for the fabrication
device using a dithering-like scheme.

The final step is to assign the material composition to each
decomposed volume. This is a conceptual step; in practice this
is achieved by simply connecting the node that constructs the
material compositions with the decompose or remap node.

Meta-Operators
Non-technical users can create their own operators with no
programming whatsoever. Once they construct an operator

graph, a user can choose to convert any part of it into a meta-
operator that is available for further instantiation and use. The
user names the operator and selects a set of public parameters
from the existing node inputs in the operator graph which are
then exposed as part of the meta operator interface.

From Operators to Real Materials
Given the extensive toolbox of operators, we provide examples
and discuss how to use Foundry to build complex heteroge-
neous materials used in engineering and found in nature. We
look at the common classes of materials and translate them to
the operator representation.

Cellular Materials: These materials include materials with
regular lattice topology or more irregular foam structures [14].
Many lattice truss structures have been explored (e.g., honey-
comb, pyramidal, tetrahedral, 3D-Kagome), each providing
different large-scale properties. The foam structures are typi-
cally classified into open-cell-structured foams (where pores
are connected to each other) and closed-cell-foams. One of
the main advantages of cellular materials is that they are light,
since most of the space is not filled with any material. The
properties of cellular materials are governed by the topology
of the structure, the fraction of the cell occupied by material,
and the properties of the constituent material. Cellular materi-
als have many applications, including aerospace, automotive,
and naval. There are already many cellular materials imple-
mented as individual operators in our library: a variety of
parameterized latices and parameterized foams. We show a
typical engineering cellular material and a similar structure
implemented in Foundry (Figure 8).

Composite Materials: These materials are made from two
or more constituent materials: at least one matrix and one
reinforcement material [8]. The reinforcement (e.g., fiber)



Cellular and functionally graded materials

Composite and biomimetic materials
Figure 8. Pairs of real, physical materials (top) and corresponding de-
sign in Foundry (bottom).

adds rigidity and the matrix (e.g., a polymer) surrounds it.
When these two material types are combined, they potentially
produce a material with different properties, such as improved
strength or lighter weight. Some classic examples of com-
posites include: concrete (loose stones held with a matrix of
cement) and plywood. Fiber-reinforced composites have be-
come extremely popular in objects that need to be strong yet
lightweight. Foundry can easily realize composite materials
either by combining basic operators or existing parameterized
composites. We show an example of a plywood material and
a corresponding structure implemented in Foundry (Figure 8).

Functionally Graded Materials: A Functionally Graded Ma-
terial (FGM) is a composite where the composition and struc-
ture of the constituent materials can gradually change over
the volume [23]. An FGM replaces the sharp interface of a
traditional composite with a smooth transition. For example,
the material composition can linearly change from material A
on one side of the object to material B on the other side. FGMs
can be used for applications that have extreme operating condi-
tions, e.g., heat shields, armor plates, and GRIN lenses. FGMs
are found in nature as well, e.g., teeth. FGMs are trivially
implemented in Foundry using a composition operator or a
variety of interpolation operators. We compare real FGMs and
materials produced in Foundry in Figure 8.

Biomimetic Materials: These materials are developed by
drawing inspiration from nature. Typically, spatial arrange-
ments of the constituent materials are copied, while the con-
stituent materials can be both copied or replaced. Examples
of biomimetic materials include honeycomb structures, wood
fibers, and bone structures. Some interesting applications
of biomimetic materials include adhesive surfaces (mussels
and geckos), self-cleaning, water-repellent surfaces (lotus
leaves), extremely strong materials (marine mollusc teeth),

structurally iridescent materials (butterfly wings), and vel-
cro (burrs). We have experimented with using Foundry to
represent biomimetic materials. Biomimetic materials are im-
plemented as material composition operators; e.g., we have
implemented a suture structure that mimics tough materials
in turtle shells. However, biomimetic materials can also be
implemented using an operator graph. We show an example
bone we generated in the results section.

@name Decompose Rectangular Lattice 2D
@category Volume Decomposition
@subcategory Lattice and Foam
@description Decompose 3D space into a 2D lattice
operator DecomposeRectangularLattice2D {
double Mod(double m, double n) {
if (m > 0) return fmod(m, n);
else if (m == 0.0) return 0.0;
else return fmod(m, n) + abs(n);

}

@Evaluate(@input double3 voxelCenter,
@input double2 cellSize = ...)
@output double3 localCoords) {

for (int i = 0; i < 2; ++i) {
localCoords[i] = Mod(voxelCenter[i], cellSize[i]);
localCoords[i] /= cellSize[i];

}
localCoords[2] = voxelCenter[2];

}
}

@name Line Fibers
@category Construct Material Composition
@subcategory Composites
@description Fibers driven by bound skeleton
operator LineFibers {
@Evaluate(@input double3 voxelCenter,

@input int lineSetIndex = ...,
@input double thickness = ...,
@input MaterialComposition fiberMC,
@input MaterialComposition fillMC,
@output MaterialComposition outputMC) {

double dist = lineDistance(lineSetIndex, voxelCenter);
if (dist <= thickness) outputMC = fiberMC;
else outputMC = fillMC;

}
}

@name Construct Cylindrical Foam
@category Construct Material Composition
@subcategory Cellular Materials
@description Construct a cylindrical foam
operator ConstructCylindricalFoam {
@Evaluate(@input double3 voxelCenter,

@input double2 cellSize = ...,
@input double cylinderRadius = ...,
@input MaterialComposition cylinderMC,
@input MaterialComposition fillMC,
@output MaterialComposition outputMC) {

double3 localCoords;
DecomposeRectangularLattice2D decomp2D;
decomp2D.Evaluate(voxelCenter, cellSize, localCoords);
double3 origin = double3(0, 0, 0);
if (distance(localCoords, origin) <= cylinderRadius)
outputMC = cylinderMC;

else
outputMC = fillMC;

}
}

Figure 9. Top: volume decomposition operator. Middle: construct
material composition operator. Bottom: combined decompose/material
composition operator. The code annotations are used to document the
operator functionality and provide automatic operator search.

Example
We describe several example operator implementations. First,
in Figure 9 (top) we show an example volume decomposition
operator. This operator decomposes the given volume into
a rectangular grid of 2D cells. The cell size is provided as
an input. The coordinates in each cell are normalized to be
unit sized. The third dimension (Z) is passed through, so, the
resulting 2D cells are extruded along the Z axis.

Figure 9 (middle) shows the implementation of a simple oper-
ator that constructs a material composition by filling in fibers
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Figure 10. Example operator diagram and generated slice.

with one material composition and the rest (the matrix or
the fill) with another. The fibers in this case are defined as
cylinders with thickness (or diameter) specified via an input
property and their position is driven via a set of piecewise-
linear curves. The curve set is defined as a separate geometric
shape in the scenegraph and is bound and indexed to the object.
Each object can be coupled with any number of shapes that
can then be referenced when performing a distance query;
hence the lineSetIndex parameter to the operator and the use
of the lineDistance function call.

Since operators are implemented as self-contained objects in
OpenFL, new operators can refer to existing operators directly
in the code, making it even easier to reuse code and imple-
ment meta operators directly using OpenFL. Figure 9 (bottom)
shows a sample meta operator — a cylindrical foam operator
that constructs a more sophisticated material composition. The
cylindrical foam operator tiles the space into cells using the
existing decomposition operator. In each cell it then constructs
a cylinder. The cylinder space is then filled with the cylinder
material composition; the rest with the fill material composi-
tion. Figure 10 shows the simple operator graph and resulting
material composition. To achieve an open-cell cylindrical
foam, the user can instantiate a null material composition and
assign it to the cylinder material composition input.

Distance Queries
Many of our operators rely on making distance queries. Unlike
prior work [7, 46, 41] that uses distance function queries to
stratify the object or to decompose it into arbitrary internal
subvolumes, we identify other uses for distance functions,
especially when used with ancillary geometry that is coupled
with the object being printed (see Figure 11).

For instance, our fabric operators create minute patterns (wo-
ven loops, knits, grids) along the surface of a given object and
are driven by a surface parameterization provided by the user.
However, thin surfaces are problematic in this case; when
querying the parameterization via a surface distance query, the
resulting parameterization may come from either side of the
thin surface. Creating a consistent parameterization that would
be ideally symmetrical is infeasible. Instead, we calculate or
embed a medial-axis surface within the fabric volume and
drive all distance queries from it. Creating a parameterization
for this surface is straightforward and is consistent across the
entire volume of the fabric.

Another usage of surface distance functions is when making
distance queries from a discrete set of surfaces associated with
the fabricated object. Consider a ski; its surfaces consist of the
top sheet, the bottom sheet and the side (edge) surface. If we

Figure 11. Distance function operators from left to right: a point dis-
tance (spherical decomposition), a line distance (skeletons), traditional
signed distance function, a distance function from a coupled mesh (e.g.,
medial-axis), and a distance from discrete object surfaces.

were to implement an operator that creates a spatially-varying
material composition near the top surface, using a general-
ized signed distance function would not be able to distinguish
between being close to the top sheet vs. the bottom sheet.
When performing surface distance queries against specified
(indexed) object surfaces, this is possible.

Finally, consider building skeletons such as bones in a charac-
ter. Instead of modeling each bone, one can construct a skele-
ton and then build a bone operator that constructs a complex
spatially varying material composition by using piecewise-
linear curve distance queries. The bone operator would use
the distance value to determine the ratio of collagen-like flex-
ible material and hard mineral-like rigid material. Similarly,
linear distances can be used to strategically place fibers whose
material compositions would be determined programatically.

EXECUTION ARCHITECTURE
Our execution engine design was inspired by the OpenFab
software architecture. However, unlike OpenFab, Foundry’s
fabricator focuses on providing interactivity and thus requires
(1) an API for communicating partial updates and (2) further
staging of the execution pipeline in order to attain partial evalu-
ation. The fabricator can operate in two different modes: slice
preview and volume preview. Different evaluation strategies
are employed in each mode. All fabrication is multi-threaded
and performed in one or more background threads. The UI
is thus kept "alive" at all times; fabrication can always be
stopped or restarted with new user changes.

The Meta-Compiler
The first step during execution is to translate the operator graph
into a corresponding fablet. Our meta-compiler performs
depth-first traversal of the operator graph and follows all input-
output connections. The necessary glue code is generated
so that top-level inputs flow where necessary; we generate
the necessary variables to carry output values from invoked
operators that return values. The meta-compiler collects all
operator parameters and builds a bind map that’s used by the
fabricator to bind operator inputs to the Foundry scenegraph.

Partial Fabrication
Similar to OpenFab, our fabricator has a streaming, fixed-
memory pipeline. It splits the build volume into manageable
chunks (slabs) and processes the volume one layer at a time.
During the initial fabrication, the fabricator will prefabricate —
prepare initial intermediate data. Subsequently, the fabricator
is invoked in refabricate mode where the actual output is
computed. Depending on which preview mode the fabricator
operates in, it performs different work during the prefabricate
and refabricate stages.



In slice preview mode, we assume that the entire slice can
be stored in memory and prefabrication consists of object
preparation work, tessellation, displacement evaluation of the
surfaces that intersect the requested slice, and voxelization of
the thin volume that occupies the given slice. The resulting
grid of voxels and their associated fablets is cached; all other
intermediate data is discarded. When refabricating, we eval-
uate the volume phase of fablets associated with the voxels
in the slice and dither the final output. In order to allow ex-
tremely high resolution preview of large objects, the slice is
progressively refined and the output streamed to the Foundry’s
viewer widget. Dithering typically is uninformative during
these intermediate stages, so, we simply accumulate a linear
combination of the material colors and corresponding quantity.
Once the full resolution evaluation is completed, we perform
a final dithering stage to accurately portray the resulting slice.

In volume preview mode, caching intermediate volume data
would be storage-prohibitive; thus, refabrication is largely the
same as offline fabrication. Large volumes can be fabricated,
though; the output is streamed and carefully stored in an effi-
cient manner (a few bits per voxel). Voxels occupied by the
same material are grouped to allow for quick toggle of each
material’s visualization. All intermediate data is discarded
after each slab computation. When a reduced working volume
is specified, the slabs are computed against the crop box.

Common to both preview modes, we cache per-object data that
gets generated during prefabrication. This includes bounds
and coarse acceleration structures such as kd-trees for acceler-
ating distance queries that get built with the input geometry. In
order to implement a robust system, it’s crucial to consistently
define the user operations that lead to discarding of caches and
re-execution of the prefabricate stage. Some of the dependen-
cies that Foundry keeps track of are: operator connections and
input values, texture file names, material assignment, visual-
ization color of materials, etc.

Model Paddle Tweel Bone
Triangle count 1,312 83,916 3,784
Voxel count (B) 3.9 3.0 15.8
Memory usage (GB) 2.3 1.9 8.5
Initial slice preview (s) 0.16 0.34 0.46
Final slice preview (s) 23.3 7.5 13.9
Naive fabrication (s) 49.4 14.39 14.5

Table 1. Memory usage and performance for previewing and final fabri-
cation. For each model we show triangle count, voxel count in billions,
memory usage (in GB) in interactive preview mode, time to first preview
results in slice preview mode, time to final high-resolution results in slice
preview mode and finally, the time it takes to fabricate a single slice of
the model without staging the fabrication pipeline.

System Performance
Foundry was designed to operate under a constrained mem-
ory budget. The coarse kd-tree only uses single digit MB. A
second-level, finer kd-tree is refined and cached in an LRU
fashion while evaluating the volume and is constrained to no
more than a few tens of MB. When previewing the material
composition, we analyze the operators and determine the maxi-
mum number of materials (N) output at any voxel. We allocate
N bits per voxel for each slab. The slab is dynamically sized

based on N, the preview grid resolution and the target memory
usage. The volume is sliced in multiple slabs and we evaluate
the operator graph one slab at a time in a typical streaming
fashion (voxels are grouped for efficient data-parallel evalu-
ation). The final output is stored directly in video memory;
assuming support for no more than 16 materials, we can repre-
sent each voxel with only 4 bits. The preview is rendered on
the GPU using a group of vertex, geometry and pixels shaders
that dynamically generate voxels with the correct color. Due
to progressive refinement, Foundry is very responsive and
initial results are always displayed in subseconds; the final,
high-resolution preview can take multiple seconds but is en-
tirely computed in a background thread while the UI is kept
alive. The system memory usage and execution performance
is shown in Table 1.

RESULT EXAMPLES
We used Foundry to design and fabricate several functional
examples that demonstrate the versatility of the system and the
ability to quickly build objects with complex material designs.
We verify the feasibility of complex material design using our
system with a user case study (see supplementary materials).

Examples
The examples were built by the authors and a novice user of
Foundry. The results were then 3D printed using a Strata-
sys Connex 500 [32], a high-end multi-material 3D printer
that uses a photopolymer phase-change inkjet printing pro-
cess and can simultaneously print with two primary materials
and one support material. We used several different materi-
als: Vero Clear (a transparent, rigid material), VeroWhite+ (a
white, rigid material) and TangoBlack+ (a black, rubber-like
material). For each example we provide some background
information and design goals. We then briefly explain how the
example’s material definition was constructed using Foundry.

Ping-Pong Paddle
We reproduced a paddle design with a smooth surface on one
side and a rough surface on the other (Figure 1). The paddle
was designed entirely with existing operators, from geometric
primitives to perform volume decomposition to pattern opera-
tors to carve out the rough surface. Geometric operators carve
out holes in the handle and perform further volume decom-
position. The marble operator generates a marble-like solid
texture on the handle and a wood operator emulates wood
rings on the blade. We reduced the paddle weight with an
internal lattice structure for the handle and the blade. Finally,
interpolant operators dynamically adjust the ratio of flexible
and rigid material to modify the sweet spot stiffness.

Ski
Modern skis have complex internal structures and are built
from a wooden core with composites providing additional
strength. Geometrically, the 3D model matches modern ski
design (Figure 1) - it’s parabolic and contains side cuts. The
core is flexible, made of a rubber-like material and its diameter
is determined in a data-driven fashion. We ran a stress-strain
simulation and identified the stress on the skis when bearing
weight from a 3-year old. We stored the output data in a texture
and used it in a custom operator to convert the simulated
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Figure 12. A 3D print of the bone designed in Foundry. Left: intricate hierarchical details of the osteons, bone marrow and spongy bone visible in a
cross-cut of the print. Right: the full 3D printed bone with the coin showed for scale.

Figure 13. The tweel mounted on a toddler tricycle.

Figure 14. Top left inset: a boundary representation of the helmet. Top
left: a voxel rendering of the helmet, excluding the transparent outer
shell. Top Right: full printed model. Bottom: zoom on the lattice struc-
ture under the shell, the retroreflective pattern, and the brain-like layer.

stress-strain into the desired core diameter. To minimize ski
torsion and provide rigidity, we used the short fibers operator
to reinforce the rubber core with beams vertically and across
the ski width, thus constructing a traditional composite.

The ski surface received additional treatment. We used the
honeycomb sandwich operator to tile the ski tip with truncated
prisms filled with transparent material. The top sheet of the
ski is made retroreflective (to minimize glare) by carving tiny
retroreflectors using the corner retroreflector operator. The
edge of the ski is a combination of rigid clear material and
rubber-like material to simulate edge bumpers. The bottom of
the ski has special grooves that induce anisotropic friction –
the ski cannot slide backwards.

Tweel
The tweel eschews the traditional pneumatic design and com-
bines the tire, suspension and the wheel into a unified unit.

We used Foundry to design a tweel from a rudimentary 3D
model (shown in Figure 6) that models the basic torus-like
structure of the tweel. The geometric details and the material
composition were fully defined within Foundry.

Foundry was used to decompose the tweel into its logical com-
ponents (spoke hub, spokes, foam, tire carcass, and tire thread).
All but one of the operators used in the tweel’s operator graph
were already part of the Foundry library. A radial stratum
operator was extensively used to decompose the volume of
the tweel into its radially emanating subvolumes. The micro-
truss operator was used to create the lattice for the spokes. The
cylinder foam operator was used to create the sponge-like layer
that provides suspension. One custom operator was written
to model the sipes and the ribs in a parameterized way. The
user can choose the number of each and the operator will au-
tomatically carve out the negative spaces and continuously lay
the rigid material that lines up the ribs. The final 3D printed
tweel was mounted on a toddler tricycle to test its ability to
bear weight (see Figure 13).

Bone
Bones have a highly hierarchical structure. We built ours using
a human right humerus from the BodyParts3D database. We
reproduce key aspects of the bone structure: the outer shell,
the compact bone layer containing the osteons, the spongy
bone layer and the medullary cavity.

The operator graph uses a medial axis distance to drive the
decomposition of the bone into its distinct layers (d = 0 on
the medial axis, and d = 1 at the surface of the bone). The
outer shell is modeled as a mix of dark gray and white ma-
terials. The compact bone is decomposed using a hexagonal
grid to tightly pack cylindrical osteons that are further sub-
divided into multiple cylindrical layers up to their individual
Harvesian canal. We used 3D Perlin noise at multiple occa-
sions: (1) thresholded to generate the spongy bone, then (2) to
warp the space and produce the non-uniform cylindrical layer
separations of the bone and the osteons, and (3) to perturbate
the surface of the bone ensuring that it mimics a real bone.
Figure 12 shows the full print as well as a close-up of a slice.

Helmet
Helmet design must usually consider multiple constraints such
as weight, aerodynamicity, aesthetic concern, and the protec-
tion they provide. Our design (shown in Figure 14) uses a
cardboard inside the helmet shell to provide a more lightweight
structure without compromising safety.



The composition uses two external surfaces: a planar surface
separating the bottom part of the design from the upper part,
and the outer surface of the volume used for the distance
queries and texture coordinates. The outer shell is made of
a transparent material displaying the internal design. The
base has a retro-reflective surface. The core of the helmet is
separated into the inner section using Perlin noise to mimick
the appearance of the brain, and a lattice whose edges are
further decomposed into sandwiches with a rectangular lattice
filling similar to cardboard. Randomized holes on the outer
shell provide ventilation.

CONCLUSION
We have developed Foundry – an interactive authoring sys-
tem for designing materials and objects for multi-material 3D
printing. It uses an extensible library of composable opera-
tors to create complex hierarchical material structures. While
we have not performed a formal user study yet (primarily
because there are no competing systems for multi-material
design to compare against), we believe the design workflow is
intuitive and easy to use. The operator graph does represent
a principled representation for hierarchical material design
and one can imagine even more sophisticated user workflows
that ultimately map to the same operations we describe in
this paper. The underlying system architecture achieves the
necessary interactive performance. We have demonstrated
system use by creating and fabricating a number of functional
objects. We think that Foundry will be used for a wide range of
applications as multi-material printing becomes a commodity.

For future work, we believe that coupling Foundry with a
multi-physics simulator could be very beneficial. The simu-
lation could inform users whether their design goals are met.
However, simulating the behavior at full resolution will be
very challenging requiring multi-scale modeling such as nu-
merical coarsening. Foundry is currently a stand-alone tool but
we envision integrating it into an existing modeling package.
This will make Foundry better integrate into existing work-
flows, allow for an iterative design over both the geometry
and the material definition and would let us leverage existing
geometric tools in the target modeling package.
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