
Eurographics Symposium on Rendering 2010
Jason Lawrence and Marc Stamminger
(Guest Editors)

Volume 29 (2010), Number 4

Adaptive Volumetric Shadow Maps

Marco Salvi†, Kiril Vidimče, Andrew Lauritzen and Aaron Lefohn

Intel Corporation

Abstract
We introduce adaptive volumetric shadow maps (AVSM), a real-time shadow algorithm that supports high-quality
shadowing from dynamic volumetric media such as hair and smoke. The key contribution of AVSM is the introduc-
tion of a streaming simplification algorithm that generates an accurate volumetric light attenuation function using
a small fixed memory footprint. This compression strategy leads to high performance because the visibility data
can remain in on-chip memory during simplification and can be efficiently sampled during rendering. We demon-
strate that AVSM compression closely approximates the ground-truth correct solution and performs competitively
to existing real-time rendering techniques while providing higher quality volumetric shadows.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture Coding and Information Theory (H.1.1) [E.4]:
Data compaction and compression—Bitmap and framebuffer operations

1. Introduction

Realistic lighting of volumetric and participating media like
smoke, fog or hair adds significant richness and realism to
rendered scenes. Self-shadowing provides important visual
cues that define the shape and structure of such media. How-
ever, in order to compute self-shadowing in volumetric me-

† marco.salvi,kiril.vidimce,andrew.t.lauritzen,aaron.lefohn@intel.com

Figure 1: This image shows self-shadowing smoke and hair,
both seamlessly rendered into the same adaptive volumetric
shadow map. Hair model courtesy of Cem Yuksel.

dia, it is necessary to accumulate partial occlusion between
visible points and light sources in the scene; doing so re-
quires capturing the effect of all of the volumetric objects
between two points and is generally much more expensive
than computing shadows from opaque surfaces. As such,
while it is common for offline renderers (e.g. those used in
film rendering) to compute volumetric shadows, the compu-
tation and memory costs required to simulate light transport
through participating media have limited their use in real-
time applications. Existing solutions for real-time volumet-
ric shadowing exhibit slicing artifacts due to non-adaptive
sampling, cover only a limited depth range, or are limited to
one type of media (e.g., only hair, only smoke, etc).

This paper introduces a new technique, adaptive volumetric
shadow maps (AVSM), that computes approximate volumet-
ric shadows for real-time applications such as games, where
predictable performance and a fixed, small memory foot-
print are required (and where approximate solutions are ac-
ceptable). AVSM ignores scattering effects and generates an
adaptively-sampled representation of the volumetric trans-
mittance in a shadow-map-like data structure, where each
texel stores a compact approximation to the transmittance
curve along the corresponding light ray. AVSM can capture
and combine transmittance data from arbitrary dynamic oc-
cluders, including combining soft media like smoke and very
localized and denser media like hair.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

The main contribution of our work is the introduction of
a streaming lossy compression algorithm that is capable of
building a constant-storage, variable-error representation of
visibility while the volume is rendered from the light’s point
of view. We show an implementation of AVSM on current
(DirectX 11-class) graphics processors that creates and sam-
ples the AVSM at interactive rates. However, this implemen-
tation requires a variable amount of memory (proportional to
the total number of fragments generated during rasterization)
due to limitations of the current DX11 rendering pipeline.
We therefore also describe a proof-of-concept software ren-
dering pipeline (running on the GPU) that overcomes these
limitations and demonstrates a streaming version of the algo-
rithm with fixed, scene-independent memory requirements.

2. Background and Related Work

Adaptive shadowing techniques such as deep shadow
maps have been used widely in offline rendering applica-
tions [LV00, XTP07]. Deep shadow maps store an adaptive,
lossily-compressed representation of the visibility function
for each light-space texel. The compression algorithm guar-
antees a fixed absolute amount of error at the expense of a
variable amount of storage and lookup cost.

Many volumetric shadowing techniques used in interactive
rendering discretize space into regularly spaced slices that
often exhibit banding artifacts [KN01,KPH∗03]. Deep opac-
ity maps improve upon opacity shadow maps specifically for
hair rendering by warping the sampling positions by the first
depth layer [YK08]. Occupancy maps also target hair render-
ing, use regular sampling but capture many more depth lay-
ers than opacity or deep opacity shadow maps by using only
one bit per layer, but are limited to volumes composed of oc-
cluders with identical opacity [SA09]. Similarly Eisemann et
al. compute transmittance of semi-transparent and constant-
opacity surfaces via scene voxelization using a one-bit-per-
layer slice map [ED06]. Mertens et al. describe a fixed-
memory shadow algorithm for hair that adaptively places
samples based on a k-means clustering estimate of the trans-
mittance function, assuming density is uniformly distributed
within a small number of clusters [MKBvR04]. Recently,
Jansen and Bavoil introduced Fourier opacity mapping,
which addresses the problem of banding artifacts, but where
the detail in shadows is limited by the depth range of volume
samples along a ray and may exhibit ringing artifacts [JB10].
FogShop by Zhou et al. [ZHG∗07], provides a method for
generating single-scattering of low-frequency media such as
smoke, and Zhou et al. [ZRL∗08] describe a technique for
lighting smoke involves a costly pre-computation step mak-
ing it applicable only to pre-computed animations. Kelley et
al. [KGP∗94] use a fixed-size staging buffer for sorting frag-
ments. Enderton et al. [ESSL10] introduce a technique for
handling all types of transparent occluders in a fixed amount
of storage for both shadow and primary visibility, generating
a stochastically sampled visibility function.

3. Algorithm Overview

Adaptive volumetric shadow maps encode the fraction of
visible light from the light source over the interval [0,1] as a
function of depth at each texel. This quantity, the transmit-
tance, is defined as:

t(z) = e−
∫ z

0 f (x)dx (1)

where f (x) is an attenuation function that represents the
amount of light absorbed or scattered along a light ray (see
Figure 2).

Given our goal of using a fixed amount of memory, each
texel stores a fixed-size array of irregularly-placed samples
of the transmittance function. Array elements, the nodes of
the approximation, are sorted front-to-back, with each node
storing a pair of depth and transmittance values (di, ti). Be-
cause we adaptively place the nodes in depth, we can repre-
sent a rich variety of shadow blockers: from soft and trans-
missive particles to sharp and opaque occluders. The num-
ber of nodes stored per texel is a user-defined quantity, with
the only requirement being to store two or more nodes per
texel. More nodes allows for a better approximation of trans-
mittance and higher quality shadows, at the expense of in-
creased storage and computational costs.

3.1. AVSM Generation

Similarly to standard shadow maps, AVSMs are created by
rendering the scene from the light’s viewpoint. While stan-
dard shadow maps support only infinitely thin opaque oc-
cluders, AVSM can handle both opaque and objects of vary-
ing thickness and density. Specifically, when a non-opaque
occluder is rendered and inserted into the AVSM along a ray
from the light, we record the entry and exit points as well as
the density along that segment. We analytically integrate the
transmittance over the segment and then composite it with

1

0

A

Tr
an
sm

it
ta
n
ce

Depth

B

1

0

Tr
an
sm

it
ta
n
ce

Depth

Figure 2: AVSM computes a compressed representation of
transmittance along a light ray using an area-based curve
simplification scheme. This figure depicts compressing a 4-
node curve to 3 nodes. The algorithm removes the node that
results in the smallest change in area under the curve, deter-
mined by computing the area of the triangle created between
the candidate node and its adjacent neighbors (triangles A
and B). The right figure shows that we remove the second
node from left because triangle A is smaller than triangle B.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

the existing transmittance values. For example, given bill-
boards representing spherical particles, we insert a segment
representing the ray’s traversal through the particle; for hair
we insert a short segment where the light enters and exits the
hair strand; and for opaque blockers, we insert a short, dense
segment that takes the transmittance to zero at the exit point.

3.2. AVSM Compression

In any non-trivial scene the number of light blockers inser-
tions will generate many more nodes than it is possible to
store in a shadow map texel (e.g., figure 7 shows a transmit-
tance curve with 282 nodes). When this happens, our algo-
rithm performs an on-the-fly lossy compression of transmit-
tance data, reducing the number of nodes to the maximum
node count before proceeding with inserting new blockers
or storing the data back to memory. This procedure may re-
quire many insertion-compression iterations, hence we need
to adopt a lossy compression algorithm that is computation-
ally inexpensive while keeping the overall error small.

Since our compression scheme only needs to remove at most
two nodes at a time (which correspond to a single segment
insertion), we focus on algorithms that take as input an n
node curve and generate an n− 1 node curve, applying it
twice when we need to remove one more node. We note that
deep shadow maps-like compression schemes [LV00] oper-
ate on the entire uncompressed transmittance curve and alter
the transmittance values within a user-defined error thresh-
old, but streaming compression algorithms must not re-
arrange node positions. This is because over many insertion-
compression iterations, nodes can drift unpredictably and
perform random walks over the compression plane, lead-
ing to non-monotonic transmittance curves and introducing
artifacts such as overly dark/bright shadows and temporal
aliasing. Given these constraints, AVSM compresses trans-
mittance data simply by removing the node that contributes
the least to the overall transmittance curve shape, and the
algorithm does not modify node positions.

3.2.1. Transmittance curve approximation

The problem of approximating a polygonal curve P by a sim-
pler polygonal curve Q is of interest in many fields and has
been studied in cartography, computer graphics, and else-
where. Several approximation algorithms have been devel-
oped that minimize the approximation error given the num-
ber of nodes the approximated curve should have (the so
called min− ε problem) using either distance or area error
metrics [DP73, HM88, BCC∗06] and with nodes restricted
to being a subset of the input nodes [HM88, AV00]. Area-
preserving metrics lead to simple and computationally effi-
cient compression code, therefore we compress by removing
the node that results in the smallest variation to the integral
of the transmittance curve (see Figure 2). We note that area-
based metrics are undefined for the first and the last node of
the polygonal curve; therefore we apply compression only

to internal nodes. In practice, this is beneficial because these
uncompressed nodes provide important visual cues such as
transition into a volume or the shadows cast from a volume
onto opaque surfaces.

Each node of a piecewise transmittance curve maps to an
ordered sequence of pairs (di, ti) that encode node position
(depth) along a light ray and its associated transmittance.
Although transmittance varies exponentially between nodes,
like deep shadow maps, we assume linear variation to sim-
plify area computations. This allows us to write the trans-
mittance integral It for an N node curve as the sum of N−1
trapezoidal areas:

It =
N−1

∑
i=0

(di+1−di)(ti + ti+1)

2

The removal of an internal ith node affects only the area of
the two trapezoids that share it. Since the rest of the curve is
unaffected we compute the variation of its integral 4ti with
a simple geometrically derived formula:

4ti = |(di+1−di−1)(ti+1− ti)− (di+1−di)(ti+1− ti−1)|

3.3. AVSM Sampling

Sampling AVSMs can be seen as a generalization of a stan-
dard shadow map depth test [Wil78] to soft occluders. In-
stead of a binary depth test, we evaluate the transmittance
function at the receiver depth. This process can be repeated
over multiple texels and the results weighted according to a
specific reconstruction filter.

Due to the irregular nature of AVSM we cannot rely on tex-
ture filtering hardware, so we instead implement filtering
manually in the shader. For a given texel we perform a search
over the domain of the curve stored in it in order to find the
two nodes that bound the shadow receiver of depth d, then
interpolate the bounding nodes’ transmittance (tl , tr) to in-
tercept the shadow receiver.

We generally assume the space between two nodes to exhibit
uniform density, which implies that transmittance varies ex-
ponentially between each depth interval (see equation 1), al-
though we have found linear interpolation to be a faster and
visually acceptable alternative:

T (d) = tl +(d−dl) ·
tr− tl
dr−dl

(2)

This basic procedure is the basis for point filtering. Bilinear
filtering is straightforward: transmittance T (d) is evaluated
over four neighboring texels and linearly weighted together.

4. Implementation

We implement AVSM and comparative techniques for vali-
dation against ground-truth, off-line, and real-time volumet-
ric shadowing techniques. All techniques are implemented

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

using the DirectX11 rendering and compute APIs. We com-
pare AVSM to real-time techniques, Fourier opacity maps
(FOM) and opacity shadow maps (OSM), because these are
representative of two important classes of solutions: uniform
slicing and frequency-space sampling. For comparison to
ground-truth and off-line techniques, we implement a GPU
version of deep shadow maps (DSM) as well as an uncom-
pressed version that simply captures and samples from all
rendered fragments.

While AVSM is designed to be a streaming compression al-
gorithm, such an implementation requires support for read-
modify-write framebuffer operations in the pixel shader. Di-
rectX11 adds the ability to perform unordered read-modify-
write operations on certain buffer types in the pixel shader;
however, for AVSM we need to ensure that each pixel’s
framebuffer memory is modified by only one fragment at
a time (a per-pixel lock). Because current DX11 compilers
forbid per-pixel locks, we implement AVSM in two different
ways. First, a variable-memory version that uses the current
DX11 rendering pipeline by first capturing all fragments and
then compressing. Second, we implement a truly streaming
AVSM implementation using a proof-of-concept software
particle rasterization pipeline, written in DX11 Compute-
Shader, that supports the required ordered read-modify-write
operations.

AVSM, DSM and the uncompressed solution share a com-
mon infrastructure that constructs a linked list of light-
attenuating segments per pixel by using DX11’s sup-
port for atomic gather/scatter memory operations in pixel
shaders [YHGT10]. All linked lists were stored in a single
buffer, and for our test scenes no more than 20MB of this
buffer was typically used. A second pass converts the list of
occluding segments at each pixel into a composited transmit-
tance curve—either uncompressed or compressed with the
AVSM or DSM compression algorithms.

4.1. AVSM Generation and Compression

AVSMs store the transmittance curve as an array of depth-
transmittance pairs (di, ti) using two single-precision float-
ing point values. An important ramification of our decision
to use a fixed small number of nodes is that the entire com-
pressed transmittance curve fits in on-chip memory during
compression. As with classic shadow maps we clear depth
to the far plane value, while transmittance is set to 1 in order
to represent empty space.

We insert each occluding segment by viewing it as a com-
positing operation between two transmittance curves respec-
tively representing the incoming blocker and the current
transmittance curve. Given two light blockers A and B lo-
cated along the same light ray, we write the density function
fAB(x) as a sum of their density functions fA(x) and fB(x).
By simply applying equation 1 we can compute their total

transmittance:

ttot(z) = e−
∫ z

0 fAB(x)dx

= e−
∫ z

0 fA(x)dxe−
∫ z

0 fB(x)dx = tA(z)tB(z)

In the absence of lossy compression, the order of composi-
tion is not important. More relevantly this equation shows
that the resulting total transmittance is given by the product
of the two transmittance functions respectively associated to
each light blocker. Compression proceeds by removing one
node at a time until the maximum node count is reached.

In practice, due to the lossy compression, the order in which
segments are inserted can affect the results. In particular, in
the variable-memory AVSM implementation, the parallel ex-
ecution of pixel shaders inserts segments into the linked lists
in an order that may vary per-frame even if the scene and
view are static. Inconsistent ordering can result in visible
temporal artifacts, although they are mostly imperceptible
and unlikely to be observed when using eight or more nodes
or when the volumetric media is moving quickly (e.g., bil-
lowing smoke). In those rare cases when a consistent order-
ing cannot be preserved and the number of nodes is not suf-
ficient to hide these artifacts, we sort the captured segments
by depth via insertion sort before inserting them. We discuss
the low cost of this sort in Section 5.3.

4.2. AVSM Sampling

Determining the light transmittance at a receiver sample re-
quires reconstructing the transmittance curve at its depth. We
locate the two nodes that bound the receiver depth via a fast
two-level search. Although we must search the irregularly
spaced nodes just as with deep shadow maps, the fact that
our representation is stored in fixed-sized small arrays re-
sults in the memory accesses being coherent and local (no
variable-length linked list traversals). In fact, the lookup can
be implemented entirely with compile-time (static) array in-
dexing and no dynamic branching, allowing the compiler to
keep the entire transmittance curve in registers.

4.3. Sofware Particle Rasterization Pipeline

As a proof-of-concept, we demonstrate ordered read-
modify-write operations on the frame buffer by building a
simple software particle rendering pipeline in DX11 Com-
puteShader. We start by dividing the screen into tiles and as-
sign each tile to a ComputeShader threadgroup. Each thread-
group processes the entire particle set in parallel and builds
a list of candidate particles that intersect the tile, ordered
by primitive ID. The ComputeShader, now parallelizing over
pixels instead of particles, runs the AVSM insertion code for
each pixel intersected by a particle. We enforce the correct
frame buffer update ordering in this stage by mapping each
pixel to a single ComputeShader thread (i.e., SIMD lane).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

Figure 3: A comparison of smoke added to a scene from a recent game title with AVSM with 12 nodes (left) and deep shadow
maps (right). Rendering the complete frame takes approximately 32 ms (30 fps), with AVSM generation and lookups consuming
approximately 11 ms of that time. AVSM is 1–2 orders of magnitude faster than a GPU implementation of deep shadow maps
and the uncompressed algorithm, yet produce a nearly identical result. Thanks to Valve Corporation for the game scene.

Figure 4: Comparison of AVSM, Fourier opacity maps, and opacity shadow maps to the ground-truth uncompressed result
in a scene with three separate smoke columns casting shadows on each other: AVSM with 8 nodes (top left), ground-truth
uncompressed (top right), Fourier opacity maps with 16 expansion terms (bottom left), and opacity shadow maps with 32 slices
(bottom right). Note how closely AVSM matches the ground-truth image. While the artifacts of the other methods do not appear
problematic in these still images, the artifacts are more apparent when animated. Note that the difference images have been
enhanced by 4x to make the comparison more clear.

5. Results

All results are gathered on an Intel Core i7 quad-core CPU
running at 3.33 GHz running Windows 7 (64-bit) and an ATI
Radeon 5870 GPU.

5.1. Qualitative Evaluation

Figure 3 shows AVSMs (12 nodes) compared to deep
shadow maps (error threshold set to 0.002). There is lit-
tle perceptible difference between the results, demonstrating
that for this real-time scene, our decision to permit variable

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

Figure 5: This scene compares (from left to right) AVSM (12 nodes), uncompressed, opacity shadow maps (32 slices), and
Fourier opacity maps (16 expansion terms). Note that AVSM-12 and uncompressed are nearly identical and the other methods
show substantial artifacts. In particular FOM suffers from severe over-darkening/ringing problems generated by high-frequency
light blockers like hair and by less-than-optimal depth bounds. Also note that these images only use bilinear shadow filtering.
Using a higher-quality filtering kernel substantially improves the shadow quality. Hair model courtesy of Cem Yuksel.

error per texel is not a problem. The accuracy of AVSM is
further validated by inspecting the transmittance curves and
seeing that even with 8 nodes, AVSM very closely approxi-
mates the true transmittance curves. The results for sampling
the uncompressed data also look identical. Our experience is
that 8 nodes results in acceptable visual quality for all views
and configurations in this scene. All shadow map sizes in
these images are 2562.

Figure 4 shows a visual comparison between 8-node AVSM,
16-term Fourier opacity maps, and 32-slice opacity shadow
maps all compared against the ground-truth uncompressed
result for a scene with three smoke columns casting shad-
ows on each other. Note how much more closely the AVSM
matches the ground-truth uncompressed result. The qual-
ity improvements are especially noticeable when animated.
A key benefit of AVSM compared to these other real-time
methods is that AVSM quality is much less affected by the
depth range covered by the volumetric occluders.

5.2. Quantitative Evaluation

We validate that the AVSM compression algorithm produces
accurate results by inspecting a number of transmittance
curves and comparing to the ground-truth uncompressed
data as well as the deep shadow map compression technique.
Overall, we see that the 4-node AVSM shows significant
deviations from the correct result, 8-node AVSM matches
closely with a few noticeable deviations, and 12-node AVSM
often matches almost exactly.

Figure 6 shows a transmittance curve from a combination of
smoke and hair (see image in Figure 5) with discrete steps
for each blonde hair and smooth transitions in the smokey
regions. Note that the 12-node AVSM matches the ground-
truth data much more closely than the opacity or Fourier
shadow map (both of which use more memory than AVSM
to represent shadow data) and is similar to the deep shadow
map but uses less memory and is 1–2 orders of magnitude
faster. Finally, in Figure 7 very translucent puffs of smoke
are encountered close to the light, then there is a sharp drop
in transmittance as the second smoke column is encountered,
then another drop near the end when the third smoke column

is encountered. The 12- and 16-node AVSM produce a close
fit to the 282-node uncompressed curve. This type of curve
with features spread over a large depth range is difficult or
costly to capture with a uniform sampling strategy.

5.3. Performance and Memory

AVSM achieves its goal of adaptively sampling volumetric
transmittance curves with performance high enough for real-
time rendering, achieving up to 85 fps for some smoke con-
figurations, and over 30 fps throughout the Valve scene (Fig-
ure 3). Table 1 shows the performance results for the view
shown in Figure 4 for AVSM compared to opacity shadow
maps, Fourier opacity maps, deep shadow maps the uncom-
pressed approach. For this scene, AVSM compression takes
only 0.5–1.5 ms, AVSM lookups take 3–10 ms depending on
the number of AVSM nodes, capturing the segments takes
0.4 ms, and sorting the segments before compression takes 3
ms. As discussed earlier, the errors arising from not sorting
are often imperceptible and so it can usually be skipped—
reducing the AVSM render time to nearly identical that of
opacity and Fourier opacity maps.

There are two key sources to AVSM performance. First is
the use of a streaming compression algorithm that permits
direct construction of a compressed transmittance represen-
tation without first building the full uncompressed transmit-
tance curve. The second is the use of a fixed small number
of nodes such that the entire representation can fit into on-
chip memory. While it may be possible to create a faster
deep shadow map implementation than ours, sampling deep
shadow maps’ variable-length linked lists is costly on to-
day’s GPUs and it may result in low SIMD efficiency. In
addition, during deep shadow map compression, it is espe-
cially challenging to keep the working set entirely in on-chip
memory.

Table 1 also shows the memory usage for AVSM, deep
shadow maps, and the uncompressed for the smoke scene
shown in Figure 4. Note that the memory usage for the
variable-memory algorithms shows the amount of memory
allocated, not the amount actually used per-frame by the dy-
namically generated linked lists. The table also shows the

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Uncompressed (238 Nodes)

Fourier Opacity Maps (16 terms)

Opacity Shadow Maps (32 slices)

Adaptive Volumetric Shadow Maps (12 Nodes)

Deep Shadow Maps

Figure 6: Transmittance curves computed for a scene with a
mix of smoke and hair for AVSM (12 nodes) (see Figure 5),
Fourier opacity maps (16 expansion terms), opacity shadow maps
(32 slices), deep shadow maps, and the ground-truth uncom-
pressed data (238 nodes). The hairs generate sharp reductions in
transmittance whereas the smoke generates gradually decreasing
transmittance. AVSM matches the ground-truth data much more
closely than the other real-time methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 35 45 55 65 75 85 95 105 115

Tr
an

sm
it

ta
n

ce

Depth from Light

Smoke Transmittance Function (Power Plant):

AVSM (4 Nodes)

AVSM (8 Nodes)

AVSM (12 Nodes)

AVSM (16 Nodes)

Uncompressed (282 Nodes)

Figure 7: Comparison of the transmittance curves computed by
the adaptive volumetric shadow map (AVSM) to the ground-truth
uncompressed data set. AVSM with 12 nodes is nearly identical to
the uncompressed curve with 282 nodes (top left). The AVSM im-
plementation takes 7–9 ms to generate (including compression).
Note the irregularly sampling required to accurately approximate
this curve with a small number of samples.

smaller amount of memory used by the fixed-memory ver-
sion of AVSM implemented using the modified software par-
ticle rendering pipeline.

As described in Section 4, we implemented a proof-of-
concept software rendering pipeline running on the GPU
that supports pixel shaders that can perform ordered read-
modify-write operations on the framebuffer (based on the
primitive submission order). While our implementation
takes approximately twice as long to generate an AVSM
as the fixed pipeline path (including sorting), it nonetheless
demonstrates a fixed-memory implementation of AVSM and
the benefit of AVSM supporting streaming in-place com-
pression. The memory requirement for this version of AVSM
is only 4 MB for a 2562 8-node AVSM.

5.4. Limitations

One limitation of AVSM is the introduction of variable er-
ror per-texel in exchange for the speed and storage bene-
fits of fixed storage and fast compression. While we show
in our test scenes and analysis that this is a valuable trade-
off to make for real-time applications insofar that it affords
high performance and rarely produces perceptible artifacts,
offline rendering users that need absolute quality guarantees
may want to continue to use a constant-error compression
strategy such as deep shadow maps.

A second limitation is that implementations using current
real-time graphics pipelines require a potentially-unbounded
amount of memory to first capture all occluding segments
along all light rays. In addition, the unordered concurrency
in pixel shaders means that when working with a low num-

ber of AVSM nodes per texel the segments may need to be
re-sorted after capture to eliminate certain temporal artifacts.
If future graphics pipelines support read-modify-write mem-
ory operations with a stable order, such as ordering by prim-
itive ID, this limitation will go away.

6. Conclusions

We have shown that adaptive volumetric shadow maps
(AVSM) provide an effective, flexible, and robust volumet-
ric shadowing algorithm for real-time applications. AVSM
achieve a high level of performance using a curve simpli-
fication compression algorithm that supports directly build-
ing the compressed transmittance function on-the-fly while
rendering. In addition, AVSM constrains the compressed
curves to use a fixed number of nodes, allowing the curves to
stay in on-chip memory during compression. As the gap be-
tween memory bandwidth and compute capability continues
to widen, this characteristic of the algorithm indicates that it
will scale well with future architectures.

Although our AVSM implementation using current GPUs
requires variable storage, we have prototyped a software
graphics pipeline that supports pixel shaders performing
ordered read-modify-write operations on the framebuffer
while rendering, thereby enabling AVSM to generate com-
pressed transmittance curves while rendering volumetric
media from the light in a streaming fashion. In the future,
we would like to investigate the performance and hardware
implications of providing this ordering option in real-time
rendering pipelines to support AVSM and other user-defined
streaming compression algorithms.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



M. Salvi, K. Vidimče, A. Lauritzen & A. Lefohn / Adaptive Volumetric Shadow Maps

AVSM 4 AVSM 8 AVSM 16 OSM 32 FOM 16 DSM 0.01 Uncompressed
Shadow Lookup (Bilinear) 3 ms 5.4 ms 9.5 ms 1.4 ms 8.9 ms 52 ms 278 ms

Capture Occluders 0.4 ms 0.4 ms 0.4 ms N/A N/A 0.4 ms 0.4 ms
Compress 0.5 ms 0.7 ms 1.6 ms 1 ms 1.1 ms 193 ms N/A

Total Frame Time 9.7 ms 12.1 ms 17.43 ms 8.6 ms 15 ms 251 ms 285 ms
Memory Usage 22(2) MB 24(4) MB 28(8) MB 8 MB 8 MB 40 MB 20 MB

Table 1: Performance and memory results for 2562 resolution, adaptive volumetric shadow maps (AVSM) with 4, 8 and 16
nodes, opacity shadow maps (OSM) with 32 slices, Fourier opacity maps (FOM) with 16 expansion terms, deep shadow maps
(DSM), and the ground-truth uncompressed data for the scene shown in Figure 4. The AVSM compression algorithm takes
0.5–1.6 ms to build the compressed representation of the transmittance curve even when there are hundreds of occluders per
light ray. The optional AVSM sorting cost is 3ms. The total memory required for AVSM and DSM implementations on current
graphics hardware is the size of the buffer used to capture the occluding segments plus the size of the compressed shadow map
(shown in parentheses). However, our prototype software rendering pipeline generates AVSM using only 2–8 MB.

Acknowledgements

We thank Jason Mitchell and Wade Schin from Valve Soft-
ware for the Left-for-Dead-2 scene and their valuable feed-
back; and Natasha Tatarchuk and Hao Chen from Bungie
and Johan Andersson from DICE for feedback on early ver-
sions of the algorithm. Thanks to the the entire Advanced
Rendering Technology team, Nico Galoppo and Doug Mc-
Nabb at Intel for their contributions and support. We also
thank others at Intel: Jeffery Williams and Artem Brizitsky
for help with art assets; and Craig Kolb, Matt Pharr, Jay Con-
nelly, Elliot Garbus, Pete Baker, and Mike Burrows for sup-
porting the research.

References

[AV00] AGARWAL P. K., VARADARAJAN K. R.: Efficient algo-
rithms for approximating polygonal chains. Discrete and Com-
putational Geometry 23, 2 (2000), 273–291. 3

[BCC∗06] BOSEA P., CABELLOB S., CHEONGC O., GUD-
MUNDSSOND J., VAN KREVELDE M., SPECKMANN B.: Area-
preserving approximations of polygonal paths. Journal of Dis-
crete Algorithms 4, 4 (2006), 554–566. 3

[DP73] DOUGLAS D. H., PEUCKER T. K.: Algorithms for the
reduction of the number of points required to represent a digitized
line or its caricature. The Canadian Cartographer 10, 2 (1973),
112–122. 3

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization
and applications. In I3D ’06: Proceedings of the 2006 symposium
on Interactive 3D graphics and games (New York, NY, USA,
2006), ACM, pp. 71–78. 2

[ESSL10] ENDERTON E., SINTORN E., SHIRLEY P., LUEBKE
D.: Stochastic transparency. In I3D ’10: Proceedings of the 2010
Symposium on Interactive 3D Graphics and Games (Feb. 2010),
pp. 157–164. 2

[HM88] HIROSHI I., MASAO I.: Computational-geometric meth-
ods for polygonal approximations of a curve. North-Holland,
Amsterdam, 1988. 3

[JB10] JANSEN J., BAVOIL L.: Fourier opacity mapping. In
I3D ’10: Proceedings of the 2010 Symposium on Interactive 3D
Graphics and Games (Feb. 2010), pp. 165–172. 2

[KGP∗94] KELLEY M., GOULD K., PEASE B., WINNER S.,

YEN A.: Hardware accelerated rendering of csg and trans-
parency. In SIGGRAPH ’94: Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1994), ACM, pp. 177–184. 2

[KN01] KIM T.-Y., NEUMANN U.: Opacity shadow maps. In
Rendering Techniques 2001: 12th Eurographics Workshop on
Rendering (June 2001), pp. 177–182. 2

[KPH∗03] KNISS J., PREMOZE S., HANSEN C., SHIRLEY P. S.,
MCPHERSON A.: A model for volume lighting and modeling.
IEEE Transactions on Visualization and Computer Graphics 9, 2
(Apr./June 2003), 150–162. 2

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In
Proceedings of ACM SIGGRAPH 2000 (July 2000), Computer
Graphics Proceedings, ACS, pp. 385–392. 2, 3

[MKBvR04] MERTENS T., KAUTZ J., BEKAERT P., VAN REETH
F.: A self-shadowing algorityhm for dynamic hair using clustered
densities. In Rendering Techniques 2004: Eurographics Sympo-
sium on Rendering (Sweden, June 2004), Eurographics / ACM
SIGGRAPH Symposium Proceedings, Eurographics. 2

[SA09] SINTORN E., ASSARSON U.: Hair self shadowing and
transparency depth ordering using occupancy maps. In I3D ’09:
Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games (Feb./Mar. 2009), pp. 67–74. 2

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. In Computer Graphics (Proceedings of SIGGRAPH 78)
(Aug. 1978), vol. 12, pp. 270–274. 3

[XTP07] XIE F., TABELLION E., PEARCE A.: Soft shadows
by ray tracing multilayer transparent shadow maps. In Render-
ing Techniques 2007: 18th Eurographics Workshop on Rendering
(June 2007), pp. 265–276. 2

[YHGT10] YANG J., HENSLEY J., GRÜN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the gpu. In Ren-
dering Techniques 2010: Eurographics Symposium on Rendering
(2010), vol. 29, Eurographics. 4

[YK08] YUKSEL C., KEYSER J.: Deep opacity maps. Computer
Graphics Forum 27, 2 (Apr. 2008), 675–680. 2

[ZHG∗07] ZHOU K., HOU Q., GONG M., SNYDER J., GUO B.,
SHUM H.-Y.: Fogshop: Real-time design and rendering of in-
homogeneous, single-scattering media. In Proceedings of Pacific
Graphics 2004 (Nov. 2007), pp. 116–125. 2

[ZRL∗08] ZHOU K., REN Z., LIN S., BAO H., GUO B., SHUM
H.-Y.: Real-time smoke rendering using compensated ray
marching. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers
(New York, NY, USA, 2008), ACM, pp. 1–12. 2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.


